Lagrangian system

http://dbpedia.org/resource/Lagrangian_system an entity of type: Place

En matemáticas, un sistema lagrangiano​ es un par (Y, L), que consiste en un fibrado suave Y → X y una densidad lagrangiana L, lo que hace que el operador diferencial de Euler-Lagrange actúe en secciones de Y → X. En mecánica clásica, muchos sistemas dinámicos son sistemas lagrangianos. El espacio de configuración de dicho sistema lagrangiano es un haz de fibras Q → ℝ en el eje de tiempo sobre ℝ. En particular, Q = ℝ × M si un marco de referencia es fijo. En teoría clásica de campos, todos los sistemas de campo lo son de Lagrange. rdf:langString
In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis ℝ. In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones. rdf:langString
В математике лагранжевой системой называется пара гладкого расслоения и лагранжевой плотности , которая определяет дифференциальный оператор Эйлера — Лагранжа, действующий на сечения расслоения . В классической механике многие динамические системы являются лагранжевыми. Конфигурационным пространством такой лагранжевой системы служит расслоение над осью времени (в частности, , если система отсчёта фиксирована). В классической теории поля, все полевые системы являются лагранжевыми. где Ядро оператора Эйлера — Лагранжа задаёт уравнение Эйлера — Лагранжа . где rdf:langString
rdf:langString Sistema lagrangiano
rdf:langString Lagrangian system
rdf:langString Лагранжева система
xsd:integer 24585634
xsd:integer 1120151598
rdf:langString En matemáticas, un sistema lagrangiano​ es un par (Y, L), que consiste en un fibrado suave Y → X y una densidad lagrangiana L, lo que hace que el operador diferencial de Euler-Lagrange actúe en secciones de Y → X. En mecánica clásica, muchos sistemas dinámicos son sistemas lagrangianos. El espacio de configuración de dicho sistema lagrangiano es un haz de fibras Q → ℝ en el eje de tiempo sobre ℝ. En particular, Q = ℝ × M si un marco de referencia es fijo. En teoría clásica de campos, todos los sistemas de campo lo son de Lagrange.
rdf:langString In mathematics, a Lagrangian system is a pair (Y, L), consisting of a smooth fiber bundle Y → X and a Lagrangian density L, which yields the Euler–Lagrange differential operator acting on sections of Y → X. In classical mechanics, many dynamical systems are Lagrangian systems. The configuration space of such a Lagrangian system is a fiber bundle Q → ℝ over the time axis ℝ. In particular, Q = ℝ × M if a reference frame is fixed. In classical field theory, all field systems are the Lagrangian ones.
rdf:langString В математике лагранжевой системой называется пара гладкого расслоения и лагранжевой плотности , которая определяет дифференциальный оператор Эйлера — Лагранжа, действующий на сечения расслоения . В классической механике многие динамические системы являются лагранжевыми. Конфигурационным пространством такой лагранжевой системы служит расслоение над осью времени (в частности, , если система отсчёта фиксирована). В классической теории поля, все полевые системы являются лагранжевыми. Лагранжева плотность (или просто лагранжиан)порядка определяется как -форма, dim, на многообразии струй порядка сечений расслоения . Лагранжиан может быть введён как элемент вариационного бикомплекса дифференциальной градуированной алгебры внешних форм на многообразиях струй расслоения . Оператор кограницы этого бикомплекса содержит вариационный оператор , который, действуя на , определяет ассоциированный оператор Эйлера — Лагранжа . Относительно координат на расслоении и соответствующих координат на многообразии струй лагранжиан и оператор Эйлера — Лагранжа имеют вид: где обозначают полные производные. Например, лагранжиан первого порядка и оператор Эйлера — Лагранжа второго порядка принимают форму Ядро оператора Эйлера — Лагранжа задаёт уравнение Эйлера — Лагранжа . Когомологии вариационного бикомплекса определяют так называемую вариационную формулу где - полный дифференциал и - эквивалент Лепажа лагранжиана . Первая и вторая теоремы Нётер являются следствиями этой вариационной формулы. Будучи обобщённым на градуированные многообразия, вариационный бикомплекс описывает градуированные лагранжевы системы четных и нечётных переменных. В другом варианте лагранжиан, оператор Эйлера — Лагранжа и уравнения Эйлера — Лагранжа вводятся в рамках вариационного исчисления.
xsd:nonNegativeInteger 5891

data from the linked data cloud