Lagrange multiplier
http://dbpedia.org/resource/Lagrange_multiplier an entity of type: Thing
En mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum…) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes.
rdf:langString
De methode van de lagrange-multiplicatoren is een techniek uit de wiskunde, in het bijzonder uit de wiskundige optimalisatie, om een optimaliseringsprobleem met nevenvoorwaarden op te lossen. Daarbij is een lagrange-multiplicator een bepaald soort hulpvariabele die bij deze techniek wordt ingevoerd, waarmee zowel de formulering als de oplossing van het optimalisatieprobleem sterk vereenvoudigd wordt. De methode is genoemd naar de Italiaanse wiskundige Joseph Louis Lagrange.
rdf:langString
ラグランジュの未定乗数法(ラグランジュのみていじょうすうほう、英: method of Lagrange multiplier)とは、束縛条件のもとで最適化を行うための数学(解析学)的な方法である。いくつかの変数に対して、いくつかの関数の値を固定するという束縛条件のもとで、別のある1つの関数の極値を求めるという問題を考える。各束縛条件に対して定数(未定乗数、Lagrange multiplier)を用意し、これらを係数とする線形結合を新しい関数(未定乗数も新たな変数とする)として考えることで、束縛問題を普通の極値問題として解くことができる方法である。
rdf:langString
라그랑주 승수법(Lagrange乘數法, 영어: Lagrange multiplier method)은 제약이 있는 최적화 문제를 푸는 방법이다. 최적화하려 하는 값에 형식적인 라그랑주 승수(Lagrange乘數, 영어: Lagrange multiplier) 항을 더하여, 제약된 문제를 제약이 없는 문제로 바꾼다. 조제프루이 라그랑주가 도입하였다. 수학, 라그랑주 역학, 경제학, 운용 과학 등에 쓰인다.
rdf:langString
Mnożnik Lagrange’a – metoda obliczania ekstremum warunkowego funkcji różniczkowalnej wykorzystywana w teorii optymalizacji. Nazwa metody pochodzi od nazwiska matematyka Josepha Louisa Lagrange’a.
rdf:langString
Метод множителей Лагранжа, применяемый для решения задач математического программирования (в частности, линейного программирования) — метод нахождения условного экстремума функции , где , относительно ограничений , где меняется от единицы до .
rdf:langString
拉格朗日乘数法(英語:Lagrange multiplier,以数学家约瑟夫·拉格朗日命名),在数学中的最优化问题中,是一种寻找多元函数在其变量受到一个或多个条件的约束时的局部极值的方法。这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日乘子,或拉氏乘子,它们是在转换后的方程,即约束方程中作为梯度(gradient)的线性组合中各个向量的系数。 比如,要求在时的局部極值时,我们可以引入新变量拉格朗日乘数,这时我们只需要求下列拉格朗日函数的局部极值: 更一般地,对含n个变量和k个约束的情况,有: 拉格朗日乘数法所得的臨界點会包含原问题的所有臨界點,但并不保证每个拉格朗日乘數法所得的臨界點都是原问题的臨界點。拉格朗日乘数法的正确性的证明牵涉到偏微分,全微分或連鎖律。
rdf:langString
Метод невизначених множників або метод невизначених множників Лагранжа — метод знаходження умовного локального екстремуму, запропонований італійським математиком Жозефом-Луї Лагранжем. Метод дозволяє звести задачу з пошуку умовного екстремуму до задачі на знаходження безумовного екстремуму.
rdf:langString
En problemes d'optimització matemàtica, el mètode dels multiplicadors de Lagrange, anomenat així per Joseph Louis Lagrange, és un mètode per trobar l'extrem d'una funció de diverses variables subjecte a una o més restriccions; és l'eina bàsica en l'optimització no lineal amb restriccions. Més formalment, els multiplicadors de Lagrange calculen els de la funció restringida. En virtut del teorema de Fermat, els extrems es troben en aquests punts, o bé en els límits, o bé en punts on la funció no és diferenciable.
rdf:langString
Metoda Lagrangeových multiplikátorů slouží k nalezení vázaných extrémů funkce, tedy jejích minim nebo maxim při platnosti omezujících podmínek. Vázané extrémy diferencovatelné reálné funkce za předpokladu platnosti diferencovatelných omezujících podmínek , kde , lze najít pomocí tzv. Lagrangeovy funkce: , kde proměnné jsou tzv. Lagrangeovy multiplikátory. Za určitých podmínek, známých jako Kuhnovy–Tuckerovy, leží lokální vázaný extrém funkce v tzv. sedlovému bodě Lagrangeovy funkce. Sedlové body najdeme položením parciálních derivací Lagrangeovy funkce rovných nule.
rdf:langString
En los problemas de optimización, el método de losmultiplicadores de Lagrange, llamados así en honor a Joseph Louis Lagrange, es un procedimiento para encontrar los máximos y mínimos relativos (o locales) de funciones de múltiples variables sujetas a restricciones. Este método reduce el problema restringido con n variables a uno sin restricciones de n + k variables, donde k es igual al número de restricciones, y cuyas ecuaciones pueden ser resueltas más fácilmente. Estas nuevas variables escalares desconocidas, una para cada restricción, son llamadas multiplicadores de Lagrange. El método dice que los puntos donde la función tiene un extremo condicionado con k restricciones, están entre los puntos estacionarios de una nueva función sin restricciones construida como una combinación lineal
rdf:langString
Das Verfahren der Lagrange-Multiplikatoren (nach Joseph-Louis Lagrange) ist in der mathematischen Optimierung eine Methode zur Lösung von Optimierungsproblemen mit Nebenbedingungen. Ein Optimierungsproblem mit Nebenbedingungen ist die Aufgabe, ein lokales Extremum einer Funktion in mehreren Veränderlichen mit einer oder mehreren Nebenbedingungen zu finden, wobei die Nebenbedingungen als Nullstellen von Funktionen definiert sind. Diese Methode führt eine neue unbekannte skalare Variable für jede Nebenbedingung ein, einen Lagrange-Multiplikator, und definiert eine Linearkombination, die die Multiplikatoren als Koeffizienten einbindet. Die Lösungen der ursprünglichen Optimierungsaufgabe können dann unter gewissen Voraussetzungen als kritische Punkte dieser sogenannten Lagrange-Funktion bestim
rdf:langString
Optimizazio matematikoan Lagrangeren biderkatzaileen metodoa erabil daiteke murrizketak dituzten funtzioen maximoak edo minimoak bilatzeko. Metodo horretan funtzioak berak ez dauzkan aldagai berezi batzuk erabiltzen dira, murrizketa bakoitzeko bat, eta aldagai horiek Lagrangeren biderkatzaile izena hartzen dute. ikurraz adierazten dira. Izena Joseph-Louis Lagrange XVIII. mendeko matematikariarengandik datorkio. Izan bedi optimizazio problema: funtzioaren minimoa lortu murrizketak kontuan hartuz non , eta.
rdf:langString
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function.
rdf:langString
Pengali Lagrange adalah metode untuk mencari nilai dan suatu fungsi. Metode ini dinamai dari matematikawan Prancis-Italia Joseph-Louis Lagrange. Apabila hanya ada satu batasan dan dua pilihan variabel, pertimbangkan berikut: maksimisasi f(x, y)bergantung pada g(x, y) = 0. Diasumsikan bahwa f dan g memiliki turunan parsial pertama. Kemudian ditambahkan variabel baru (λ) yang disebut "pengali Lagrange", dan fungsi Lagrange didefinisikan sebagai berikut: Untuk kasus umum dengan jumlah n (variabel) yang sembarang dan jumlah M (batasan) yang sembarang, bentuk Lagrangenya adalah:
rdf:langString
In analisi matematica e programmazione matematica, il metodo dei moltiplicatori di Lagrange permette di ridurre i punti stazionari di una funzione in variabili e vincoli di frontiera , detta obiettivo, a quelli di una terza funzione in variabili non vincolata, detta lagrangiana: , introducendo tante nuove variabili scalari λ, dette moltiplicatori, quanti sono i vincoli .
rdf:langString
Em matemática, em problemas de otimização, o método dos multiplicadores de Lagrange permite encontrar extremos (máximos e mínimos) de uma função de uma ou mais variáveis suscetíveis a uma ou mais restrições. Por exemplo (veja a figura 1 à direita), considere o problema de otimização maximize ou seja, deseja-se encontrar o ponto máximo desta funçãosujeito a O método consiste em introduzir uma variável nova ( normalmente), chamada de multiplicador de Lagrange. A partir disso, estuda-se a função de Lagrange, assim definida: O nome "multiplicador de Lagrange" é uma homenagem a Joseph Louis Lagrange.
rdf:langString
Lagrangemultiplikator är ett begrepp i matematisk analys som kan användas om man vill hitta alla extrempunkter för funktionen f(x, y) när den begränsas av ett g(x, y) = 0. Metoden är namngiven efter Joseph Louis Lagrange och baseras på följande teorem. Antag att två funktioner f(x,y) samt g(x,y) har kontinuerliga förstaderivator i punkten P0 = (x0, y0) på kurvan C med ekvationen g(x, y) = 0. Antag också att när f(x, y) begränsas av punkter på C så har funktionen alltid ett lokalt maximum eller minimum i P0. Antag även att: P0 är inte en slutpunkt på C och att .
rdf:langString
rdf:langString
Multiplicadors de Lagrange
rdf:langString
Metoda Lagrangeových multiplikátorů
rdf:langString
Lagrange-Multiplikator
rdf:langString
Multiplicadores de Lagrange
rdf:langString
Lagrangeren biderkatzaile
rdf:langString
Pengali Lagrange
rdf:langString
Multiplicateur de Lagrange
rdf:langString
Lagrange multiplier
rdf:langString
Metodo dei moltiplicatori di Lagrange
rdf:langString
ラグランジュの未定乗数法
rdf:langString
라그랑주 승수법
rdf:langString
Lagrange-multiplicator
rdf:langString
Mnożniki Lagrange’a
rdf:langString
Multiplicadores de Lagrange
rdf:langString
Метод множителей Лагранжа
rdf:langString
Lagrangemultiplikator
rdf:langString
Метод невизначених множників
rdf:langString
拉格朗日乘数
xsd:integer
159974
xsd:integer
1123855496
rdf:langString
En problemes d'optimització matemàtica, el mètode dels multiplicadors de Lagrange, anomenat així per Joseph Louis Lagrange, és un mètode per trobar l'extrem d'una funció de diverses variables subjecte a una o més restriccions; és l'eina bàsica en l'optimització no lineal amb restriccions. Simplificant, aquesta tècnica permet determinar a quin lloc d'un conjunt particular de punts (com una esfera, un cercle o un pla) es troba l'extrem d'una funció donada. La tècnica aplica una generalització i formalització del fet que el conjunt de tots els punts a alçada h sobre la superfície de la terra és un conjunt tangent al cim d'una muntanya d'alçada h. Més formalment, els multiplicadors de Lagrange calculen els de la funció restringida. En virtut del teorema de Fermat, els extrems es troben en aquests punts, o bé en els límits, o bé en punts on la funció no és diferenciable. Redueix el trobar els punts estacionaris d'una funció restringida d'n variables amb k restriccions a trobar els punts estacionaris d'una funció no restringida d'n+k variables. El mètode introdueix una variable escalar desconeguda nova (anomenada multiplicador de Lagrange) per a cada restricció, i defineix una funció nova (anomenada Lagrangià) en termes de la funció original, les restriccions, i els multiplicadors Lagrange.
rdf:langString
Metoda Lagrangeových multiplikátorů slouží k nalezení vázaných extrémů funkce, tedy jejích minim nebo maxim při platnosti omezujících podmínek. Vázané extrémy diferencovatelné reálné funkce za předpokladu platnosti diferencovatelných omezujících podmínek , kde , lze najít pomocí tzv. Lagrangeovy funkce: , kde proměnné jsou tzv. Lagrangeovy multiplikátory. Za určitých podmínek, známých jako Kuhnovy–Tuckerovy, leží lokální vázaný extrém funkce v tzv. sedlovému bodě Lagrangeovy funkce. Sedlové body najdeme položením parciálních derivací Lagrangeovy funkce rovných nule. Metodu Lagrangeových multiplikátorů uveřejnil Joseph-Louis Lagrange počátkem 19. století.
rdf:langString
En los problemas de optimización, el método de losmultiplicadores de Lagrange, llamados así en honor a Joseph Louis Lagrange, es un procedimiento para encontrar los máximos y mínimos relativos (o locales) de funciones de múltiples variables sujetas a restricciones. Este método reduce el problema restringido con n variables a uno sin restricciones de n + k variables, donde k es igual al número de restricciones, y cuyas ecuaciones pueden ser resueltas más fácilmente. Estas nuevas variables escalares desconocidas, una para cada restricción, son llamadas multiplicadores de Lagrange. El método dice que los puntos donde la función tiene un extremo condicionado con k restricciones, están entre los puntos estacionarios de una nueva función sin restricciones construida como una combinación lineal de la función y las funciones implicadas en las restricciones, cuyos coeficientes son los multiplicadores. La demostración usa derivadas parciales y la regla de la cadena para funciones de varias variables. Se trata de extraer una función implícita de las restricciones, y encontrar las condiciones para que las derivadas parciales con respecto a las variables independientes de la función sean iguales a cero.
rdf:langString
Das Verfahren der Lagrange-Multiplikatoren (nach Joseph-Louis Lagrange) ist in der mathematischen Optimierung eine Methode zur Lösung von Optimierungsproblemen mit Nebenbedingungen. Ein Optimierungsproblem mit Nebenbedingungen ist die Aufgabe, ein lokales Extremum einer Funktion in mehreren Veränderlichen mit einer oder mehreren Nebenbedingungen zu finden, wobei die Nebenbedingungen als Nullstellen von Funktionen definiert sind. Diese Methode führt eine neue unbekannte skalare Variable für jede Nebenbedingung ein, einen Lagrange-Multiplikator, und definiert eine Linearkombination, die die Multiplikatoren als Koeffizienten einbindet. Die Lösungen der ursprünglichen Optimierungsaufgabe können dann unter gewissen Voraussetzungen als kritische Punkte dieser sogenannten Lagrange-Funktion bestimmt werden.
rdf:langString
Optimizazio matematikoan Lagrangeren biderkatzaileen metodoa erabil daiteke murrizketak dituzten funtzioen maximoak edo minimoak bilatzeko. Metodo horretan funtzioak berak ez dauzkan aldagai berezi batzuk erabiltzen dira, murrizketa bakoitzeko bat, eta aldagai horiek Lagrangeren biderkatzaile izena hartzen dute. ikurraz adierazten dira. Izena Joseph-Louis Lagrange XVIII. mendeko matematikariarengandik datorkio. Lagrangeren biderkatzaileen metodoa funtzioen minimoak edo maximoak bilatzeko erabiltzen da, baina funtzioak hainbat murrizketa bete behar dituenean erabiltzen da metodo hau. Funtzioak n aldagai izanik k murrizketa bete behar baditu, funtzioaren minimoa (edo maximoa) bilatzeko problema eraldatu eta n+k ekuazio eta beste hainbeste aldagaiko sistema batean bihurtzen du. Problema berri hori ebatziz jatorrizko funtzioaren minimoa edo maximoa lortuko da. Izan bedi optimizazio problema: funtzioaren minimoa lortu murrizketak kontuan hartuz non , eta. Problema horretan oinarrituz Lagrangeren funtzioa defini dezakegu, horretarako, murrizketa bakoitzari aldagaia biderkatuko diogu: Hasierako minimizazio problema ebaztearen parekoa da Lagrangeren funtzioaren puntu kritikoak bilatzea, hau da, honako sistema ebaztea: Kontuan izan Lagrangeren funtzioaren deribatu partzialak kalkulatu behar direla, hau da, aldagai bakoitzarekiko deribatu partziala zerorekin berdindu behar da eta horrela lortzen den sistema ebatzi behar da, beraz, n + k ekuazio izango ditugu eta beste horrenbeste ezezagun: Lagrangeren funtzioaren puntu kritikoak jatorrizko funtzioaren minimo edo maximo (edo inflexio puntu) izan daitezke, beraz, sistema ebatzi ondoren lortutako soluzioak jatorrizko probleman balioztatu beharko dira.
rdf:langString
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equality constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). It is named after the mathematician Joseph-Louis Lagrange. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied. The relationship between the gradient of the function and gradients of the constraints rather naturally leads to a reformulation of the original problem, known as the Lagrangian function. The method can be summarized as follows: in order to find the maximum or minimum of a function subjected to the equality constraint , form the Lagrangian function and find the stationary points of considered as a function of and the Lagrange multiplier ; this means that all partial derivatives should be zero, including the partial derivative with respect to . The solution corresponding to the original constrained optimization is always a saddle point of the Lagrangian function, which can be identified among the stationary points from the definiteness of the bordered Hessian matrix. The great advantage of this method is that it allows the optimization to be solved without explicit parameterization in terms of the constraints. As a result, the method of Lagrange multipliers is widely used to solve challenging constrained optimization problems. Further, the method of Lagrange multipliers is generalized by the Karush–Kuhn–Tucker conditions, which can also take into account inequality constraints of the form for a given constant .
rdf:langString
En mathématiques, et plus particulièrement en analyse, la méthode des multiplicateurs de Lagrange permet de trouver les points stationnaires (maximum, minimum…) d'une fonction dérivable d'une ou plusieurs variables, sous contraintes.
rdf:langString
Pengali Lagrange adalah metode untuk mencari nilai dan suatu fungsi. Metode ini dinamai dari matematikawan Prancis-Italia Joseph-Louis Lagrange. Apabila hanya ada satu batasan dan dua pilihan variabel, pertimbangkan berikut: maksimisasi f(x, y)bergantung pada g(x, y) = 0. Diasumsikan bahwa f dan g memiliki turunan parsial pertama. Kemudian ditambahkan variabel baru (λ) yang disebut "pengali Lagrange", dan fungsi Lagrange didefinisikan sebagai berikut: λ dapat ditambahkan atau dikurangi. Jika f(x0, y0) adalah nilai maksimum f(x, y), maka terdapat λ0 sehingga (x0, y0, λ0) adalah titik stasioner untuk fungsi Lagrange. (titik stasioner adalah titik engan turunan parsial yang bernilai nol). Namun, tidak semua titik stasioner menghasilkan solusi untuk permasalahan awalnya. Maka dari itu, metode pengali Lagrange menghasilkan untuk optimalitas dalam permasalahan yang terbatasi. Untuk kasus umum dengan jumlah n (variabel) yang sembarang dan jumlah M (batasan) yang sembarang, bentuk Lagrangenya adalah: sekali lagi optimum f yang terbatasi sama dengan titik stasioner
rdf:langString
De methode van de lagrange-multiplicatoren is een techniek uit de wiskunde, in het bijzonder uit de wiskundige optimalisatie, om een optimaliseringsprobleem met nevenvoorwaarden op te lossen. Daarbij is een lagrange-multiplicator een bepaald soort hulpvariabele die bij deze techniek wordt ingevoerd, waarmee zowel de formulering als de oplossing van het optimalisatieprobleem sterk vereenvoudigd wordt. De methode is genoemd naar de Italiaanse wiskundige Joseph Louis Lagrange.
rdf:langString
ラグランジュの未定乗数法(ラグランジュのみていじょうすうほう、英: method of Lagrange multiplier)とは、束縛条件のもとで最適化を行うための数学(解析学)的な方法である。いくつかの変数に対して、いくつかの関数の値を固定するという束縛条件のもとで、別のある1つの関数の極値を求めるという問題を考える。各束縛条件に対して定数(未定乗数、Lagrange multiplier)を用意し、これらを係数とする線形結合を新しい関数(未定乗数も新たな変数とする)として考えることで、束縛問題を普通の極値問題として解くことができる方法である。
rdf:langString
라그랑주 승수법(Lagrange乘數法, 영어: Lagrange multiplier method)은 제약이 있는 최적화 문제를 푸는 방법이다. 최적화하려 하는 값에 형식적인 라그랑주 승수(Lagrange乘數, 영어: Lagrange multiplier) 항을 더하여, 제약된 문제를 제약이 없는 문제로 바꾼다. 조제프루이 라그랑주가 도입하였다. 수학, 라그랑주 역학, 경제학, 운용 과학 등에 쓰인다.
rdf:langString
In analisi matematica e programmazione matematica, il metodo dei moltiplicatori di Lagrange permette di ridurre i punti stazionari di una funzione in variabili e vincoli di frontiera , detta obiettivo, a quelli di una terza funzione in variabili non vincolata, detta lagrangiana: , introducendo tante nuove variabili scalari λ, dette moltiplicatori, quanti sono i vincoli . Se è stazionario, per esempio un massimo, per il problema vincolato originario, allora esiste un tale che è stazionario anche se non necessariamente dello stesso tipo, cioè nell'esempio un massimo, per la lagrangiana. Non tutti i punti stazionari portano a una soluzione del problema originario. Quindi il metodo dei moltiplicatori di Lagrange fornisce una condizione necessaria, ma non sufficiente per l'ottimizzazione nei problemi vincolati.
rdf:langString
Mnożnik Lagrange’a – metoda obliczania ekstremum warunkowego funkcji różniczkowalnej wykorzystywana w teorii optymalizacji. Nazwa metody pochodzi od nazwiska matematyka Josepha Louisa Lagrange’a.
rdf:langString
Метод множителей Лагранжа, применяемый для решения задач математического программирования (в частности, линейного программирования) — метод нахождения условного экстремума функции , где , относительно ограничений , где меняется от единицы до .
rdf:langString
Em matemática, em problemas de otimização, o método dos multiplicadores de Lagrange permite encontrar extremos (máximos e mínimos) de uma função de uma ou mais variáveis suscetíveis a uma ou mais restrições. Por exemplo (veja a figura 1 à direita), considere o problema de otimização maximize ou seja, deseja-se encontrar o ponto máximo desta funçãosujeito a O método consiste em introduzir uma variável nova ( normalmente), chamada de multiplicador de Lagrange. A partir disso, estuda-se a função de Lagrange, assim definida: Nesta função, o termo pode ser adicionado ou subtraído. Se é um ponto de máximo para o problema original, então existe um tal que é um para a função lagrangiana, ou seja, existe um ponto para o qual as derivadas parciais de são iguais a zero. No entanto, nem todos os pontos estacionários permitem uma solução para o problema original. Portanto, o método dos multiplicadores de Lagrange garante uma condição necessária para a otimização em problemas de otimização com restrição. O nome "multiplicador de Lagrange" é uma homenagem a Joseph Louis Lagrange.
rdf:langString
Lagrangemultiplikator är ett begrepp i matematisk analys som kan användas om man vill hitta alla extrempunkter för funktionen f(x, y) när den begränsas av ett g(x, y) = 0. Metoden är namngiven efter Joseph Louis Lagrange och baseras på följande teorem. Antag att två funktioner f(x,y) samt g(x,y) har kontinuerliga förstaderivator i punkten P0 = (x0, y0) på kurvan C med ekvationen g(x, y) = 0. Antag också att när f(x, y) begränsas av punkter på C så har funktionen alltid ett lokalt maximum eller minimum i P0. Antag även att: P0 är inte en slutpunkt på C och att . Då finns ett tal, λ0, sådant att (x0, y0) är en stationär punkt för Lagrangefunktionen där λ är en Lagrangemultiplikator.
rdf:langString
拉格朗日乘数法(英語:Lagrange multiplier,以数学家约瑟夫·拉格朗日命名),在数学中的最优化问题中,是一种寻找多元函数在其变量受到一个或多个条件的约束时的局部极值的方法。这种方法可以将一个有n个变量与k个约束条件的最优化问题转换为一个解有n + k个变量的方程组的解的问题。这种方法中引入了一个或一组新的未知数,即拉格朗日乘数,又称拉格朗日乘子,或拉氏乘子,它们是在转换后的方程,即约束方程中作为梯度(gradient)的线性组合中各个向量的系数。 比如,要求在时的局部極值时,我们可以引入新变量拉格朗日乘数,这时我们只需要求下列拉格朗日函数的局部极值: 更一般地,对含n个变量和k个约束的情况,有: 拉格朗日乘数法所得的臨界點会包含原问题的所有臨界點,但并不保证每个拉格朗日乘數法所得的臨界點都是原问题的臨界點。拉格朗日乘数法的正确性的证明牵涉到偏微分,全微分或連鎖律。
rdf:langString
Метод невизначених множників або метод невизначених множників Лагранжа — метод знаходження умовного локального екстремуму, запропонований італійським математиком Жозефом-Луї Лагранжем. Метод дозволяє звести задачу з пошуку умовного екстремуму до задачі на знаходження безумовного екстремуму.
xsd:nonNegativeInteger
45207