Ky Fan inequality
http://dbpedia.org/resource/Ky_Fan_inequality an entity of type: Abstraction100002137
In der Mathematik wird als Ky-Fan-Ungleichung eine von Ky Fan entdeckte und erstmals von (: Beckenbach und Bellman, 1983) publizierte Ungleichung bezeichnet. Ihre Bedeutung liegt vor allem darin, dass sie durch ihre Ähnlichkeit mit der Ungleichung vom arithmetischen und geometrischen Mittel Ausgangspunkt für weitere Verallgemeinerungen ist.
rdf:langString
In mathematics, there are two different results that share the common name of the Ky Fan inequality. One is an inequality involving the geometric mean and arithmetic mean of two sets of real numbers of the unit interval. The result was published on page 5 of the book Inequalities by Edwin F. Beckenbach and Richard E. Bellman (1961), who refer to an unpublished result of Ky Fan. They mention the result in connection with the inequality of arithmetic and geometric means and Augustin Louis Cauchy's proof of this inequality by forward-backward-induction; a method which can also be used to prove the Ky Fan inequality.
rdf:langString
rdf:langString
Ky-Fan-Ungleichung
rdf:langString
Ky Fan inequality
rdf:langString
Ky Fan
xsd:integer
2143560
xsd:integer
1091334651
xsd:integer
15631
rdf:langString
In der Mathematik wird als Ky-Fan-Ungleichung eine von Ky Fan entdeckte und erstmals von (: Beckenbach und Bellman, 1983) publizierte Ungleichung bezeichnet. Ihre Bedeutung liegt vor allem darin, dass sie durch ihre Ähnlichkeit mit der Ungleichung vom arithmetischen und geometrischen Mittel Ausgangspunkt für weitere Verallgemeinerungen ist.
rdf:langString
In mathematics, there are two different results that share the common name of the Ky Fan inequality. One is an inequality involving the geometric mean and arithmetic mean of two sets of real numbers of the unit interval. The result was published on page 5 of the book Inequalities by Edwin F. Beckenbach and Richard E. Bellman (1961), who refer to an unpublished result of Ky Fan. They mention the result in connection with the inequality of arithmetic and geometric means and Augustin Louis Cauchy's proof of this inequality by forward-backward-induction; a method which can also be used to prove the Ky Fan inequality. This Ky Fan inequality is a special case of Levinson's inequality and also the starting point for several generalizations and refinements; some of them are given in the references below. The second Ky Fan inequality is used in game theory to investigate the existence of an equilibrium.
xsd:nonNegativeInteger
8163