Kodaira embedding theorem

http://dbpedia.org/resource/Kodaira_embedding_theorem an entity of type: WikicatTheoremsInAlgebraicGeometry

대수기하학에서 고다이라 매장 정리(小平[こだいら]埋藏定理, 영어: Kodaira embedding theorem)는 어떤 콤팩트 복소다양체가 복소 사영 대수다양체인지 여부에 대한 필요충분조건을 제시하는 정리다. rdf:langString
数学において、小平の埋め込み定理(こだいらのうめこみていり、英: Kodaira embedding theorem)は、コンパクトなケーラー多様体の中で、複素数体上の非特異射影多様体を特徴付ける。要するに小平の埋め込み定理は、ちょうどどんな複素多様体が斉次多項式により定義されるのかを言っている. 小平邦彦の結果は、ホッジ計量を持つコンパクトケーラー多様体 M は、ある十分に大きい次元 N の複素射影空間の中へ複素解析的に埋め込む事ができるという定理である。ここに、ホッジ計量を持つとは、ケーラー形式 ω により定義される 2 次のコホモロジー類が整係数コホモロジーであることを意味する。M が代数多様体として埋め込まれるという事実は、周の定理によりコンパクト性から従う。ホッジ計量を持つケーラー多様体は、(にちなみ)ホッジ多様体と呼ばれることもある。従って、小平の結果は、ホッジ多様体は射影的であると述べている。逆、すなわち射影多様体はホッジ多様体であることは、より基本的であり、以前から知られていた。 rdf:langString
Теорема Кодайры о вложении отвечает на вопрос, какие компактные кэлеровы многообразия являются проективными алгебраическими многообразиями.Иначе говоря, какие комплексные многообразия определяются однородными многочленами. Теорема доказана Кунихито Кодайрой. rdf:langString
Теорема Кодайри про вкладення відповідає на питання, які компактні келерові многовиди є проективними алгебричними многовидами. Інакше кажучи, які комплексні многовиди визначаються однорідними многочленами. Теорема доведена Куніхіто Кодайрою. rdf:langString
In mathematics, the Kodaira embedding theorem characterises non-singular projective varieties, over the complex numbers, amongst compact Kähler manifolds. In effect it says precisely which complex manifolds are defined by homogeneous polynomials. Kodaira also proved (Kodaira 1963), by recourse to the classification of compact complex surfaces, that every compact Kähler surface is a deformation of a projective Kähler surface. This was later simplified by Buchdahl to remove reliance on the classification (Buchdahl 2008). rdf:langString
rdf:langString Kodaira embedding theorem
rdf:langString 고다이라 매장 정리
rdf:langString 小平の埋め込み定理
rdf:langString Теорема Кодайры о вложении
rdf:langString Теорема Кодайри про вкладення
xsd:integer 2986151
xsd:integer 1111137675
rdf:langString In mathematics, the Kodaira embedding theorem characterises non-singular projective varieties, over the complex numbers, amongst compact Kähler manifolds. In effect it says precisely which complex manifolds are defined by homogeneous polynomials. Kunihiko Kodaira's result is that for a compact Kähler manifold M, with a Hodge metric, meaning that the cohomology class in degree 2 defined by the Kähler form ω is an integral cohomology class, there is a complex-analytic embedding of M into complex projective space of some high enough dimension N. The fact that M embeds as an algebraic variety follows from its compactness by Chow's theorem. A Kähler manifold with a Hodge metric is occasionally called a Hodge manifold (named after W. V. D. Hodge), so Kodaira's results states that Hodge manifolds are projective. The converse that projective manifolds are Hodge manifolds is more elementary and was already known. Kodaira also proved (Kodaira 1963), by recourse to the classification of compact complex surfaces, that every compact Kähler surface is a deformation of a projective Kähler surface. This was later simplified by Buchdahl to remove reliance on the classification (Buchdahl 2008).
rdf:langString 대수기하학에서 고다이라 매장 정리(小平[こだいら]埋藏定理, 영어: Kodaira embedding theorem)는 어떤 콤팩트 복소다양체가 복소 사영 대수다양체인지 여부에 대한 필요충분조건을 제시하는 정리다.
rdf:langString 数学において、小平の埋め込み定理(こだいらのうめこみていり、英: Kodaira embedding theorem)は、コンパクトなケーラー多様体の中で、複素数体上の非特異射影多様体を特徴付ける。要するに小平の埋め込み定理は、ちょうどどんな複素多様体が斉次多項式により定義されるのかを言っている. 小平邦彦の結果は、ホッジ計量を持つコンパクトケーラー多様体 M は、ある十分に大きい次元 N の複素射影空間の中へ複素解析的に埋め込む事ができるという定理である。ここに、ホッジ計量を持つとは、ケーラー形式 ω により定義される 2 次のコホモロジー類が整係数コホモロジーであることを意味する。M が代数多様体として埋め込まれるという事実は、周の定理によりコンパクト性から従う。ホッジ計量を持つケーラー多様体は、(にちなみ)ホッジ多様体と呼ばれることもある。従って、小平の結果は、ホッジ多様体は射影的であると述べている。逆、すなわち射影多様体はホッジ多様体であることは、より基本的であり、以前から知られていた。
rdf:langString Теорема Кодайры о вложении отвечает на вопрос, какие компактные кэлеровы многообразия являются проективными алгебраическими многообразиями.Иначе говоря, какие комплексные многообразия определяются однородными многочленами. Теорема доказана Кунихито Кодайрой.
rdf:langString Теорема Кодайри про вкладення відповідає на питання, які компактні келерові многовиди є проективними алгебричними многовидами. Інакше кажучи, які комплексні многовиди визначаються однорідними многочленами. Теорема доведена Куніхіто Кодайрою.
xsd:nonNegativeInteger 3453

data from the linked data cloud