Klein configuration

http://dbpedia.org/resource/Klein_configuration an entity of type: WikicatConfigurations

In geometry, the Klein configuration, studied by Klein, is a geometric configuration related to Kummer surfaces that consists of 60 points and 60 planes, with each point lying on 15 planes and each plane passing through 15 points. The configurations uses 15 pairs of lines, 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 and their reverses. The 60 points are three concurrent lines forming an odd permutation, shown below. The sixty planes are 3 coplanar lines forming even permutations, obtained by reversing the last two digits in the points. For any point or plane there are 15 members in the other set containing those 3 lines. [Hudson, 1905] rdf:langString
Конфигурация Клейна — конфигурация, связанная с , состоящей из 60 точек и 60 плоскостей, в которой каждая точка лежит на 15 плоскостях, а каждая плоскость проходит через 15 точек. Конфигурация использует 15 пар прямых 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 и их обратные (с переставленными цифрами). Ниже показаны 60 точек, полученные из троек пересекающихся прямых, образующих нечётные перестановки. Шестьдесят плоскостей — это тройки прямых, лежащих в одной плоскости и образующих чётные перестановки, полученные перестановкой последних двух цифр в точках. Для любой точки или плоскости существует 15 членов в другом множестве, содержащем эти 3 прямые. rdf:langString
rdf:langString Klein configuration
rdf:langString Конфигурация Клейна
xsd:integer 35360651
xsd:integer 1019242819
rdf:langString In geometry, the Klein configuration, studied by Klein, is a geometric configuration related to Kummer surfaces that consists of 60 points and 60 planes, with each point lying on 15 planes and each plane passing through 15 points. The configurations uses 15 pairs of lines, 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 and their reverses. The 60 points are three concurrent lines forming an odd permutation, shown below. The sixty planes are 3 coplanar lines forming even permutations, obtained by reversing the last two digits in the points. For any point or plane there are 15 members in the other set containing those 3 lines. [Hudson, 1905]
rdf:langString Конфигурация Клейна — конфигурация, связанная с , состоящей из 60 точек и 60 плоскостей, в которой каждая точка лежит на 15 плоскостях, а каждая плоскость проходит через 15 точек. Конфигурация использует 15 пар прямых 12 . 13 . 14 . 15 . 16 . 23 . 24 . 25 . 26 . 34 . 35 . 36 . 45 . 46 . 56 и их обратные (с переставленными цифрами). Ниже показаны 60 точек, полученные из троек пересекающихся прямых, образующих нечётные перестановки. Шестьдесят плоскостей — это тройки прямых, лежащих в одной плоскости и образующих чётные перестановки, полученные перестановкой последних двух цифр в точках. Для любой точки или плоскости существует 15 членов в другом множестве, содержащем эти 3 прямые. Изучена Феликсом Клейном в 1870 году.
xsd:nonNegativeInteger 4987

data from the linked data cloud