Khintchine inequality
http://dbpedia.org/resource/Khintchine_inequality an entity of type: Abstraction100002137
Die Chintschin-Ungleichung, benannt nach Alexander Jakowlewitsch Chintschin, ist eine Ungleichung aus dem mathematischen Teilgebiet der Funktionalanalysis. Sie vergleicht Summen von Quadraten mit p-Normen zugehöriger Linearkombinationen von Rademacherfunktionen. Nach der französischen Transskiption des Namens Chintschin findet man diese Ungleichung oft unter der Bezeichnung Khintchine-Ungleichung.
rdf:langString
In mathematics, the Khintchine inequality, named after Aleksandr Khinchin and spelled in multiple ways in the Latin alphabet, is a theorem from probability, and is also frequently used in analysis. Heuristically, it says that if we pick complex numbers , and add them together each multiplied by a random sign , then the expected value of the sum's modulus, or the modulus it will be closest to on average, will be not too far off from .
rdf:langString
rdf:langString
Chintschin-Ungleichung
rdf:langString
Khintchine inequality
xsd:integer
10002357
xsd:integer
1054710754
rdf:langString
Die Chintschin-Ungleichung, benannt nach Alexander Jakowlewitsch Chintschin, ist eine Ungleichung aus dem mathematischen Teilgebiet der Funktionalanalysis. Sie vergleicht Summen von Quadraten mit p-Normen zugehöriger Linearkombinationen von Rademacherfunktionen. Nach der französischen Transskiption des Namens Chintschin findet man diese Ungleichung oft unter der Bezeichnung Khintchine-Ungleichung.
rdf:langString
In mathematics, the Khintchine inequality, named after Aleksandr Khinchin and spelled in multiple ways in the Latin alphabet, is a theorem from probability, and is also frequently used in analysis. Heuristically, it says that if we pick complex numbers , and add them together each multiplied by a random sign , then the expected value of the sum's modulus, or the modulus it will be closest to on average, will be not too far off from .
xsd:nonNegativeInteger
4332