Job-shop scheduling

http://dbpedia.org/resource/Job-shop_scheduling an entity of type: Thing

Le séquençage de tâches (en anglais job sequencing) est un des nombreux modèles d'ordonnancement d'atelier de production. En informatique théorique, et notamment en complexité des algorithmes, c'est la formulation d'un problème particulier d'ordonnancement considéré par Richard Karp dans sa célèbre description des 21 problèmes NP-complets. rdf:langString
Job sequencing is een probleem uit de theoretische computerwetenschap en combinatoriek. rdf:langString
Unter einem Job Shop versteht man in der Maschinenbelegungsplanung eine Klasse von Modellen, bei denen auf m Maschinen n Aufträge zu fertigen sind. Ein Auftrag besteht dabei aus einer Folge von g Arbeitsgängen, die auf bestimmten Maschinen bearbeitet werden müssen. Dabei kann jeder Auftrag grundsätzlich auch mehrmals auf derselben Maschine bearbeitet werden oder auch manche Maschinen auslassen. Es handelt sich somit um Modelle von Produktionssystemen mit Werkstattfertigung. Wenn die Folge der Arbeitsgänge für jeden Auftrag identisch ist, handelt es sich um einen Flow-Shop, der ein Modell der Fließproduktion darstellt. Wird auf jeder Maschine die gleiche Folge von Aufträgen bearbeitet, handelt es sich um einen Permutations-Job Shop. Für den Fall, dass nur eine Maschine vorhanden ist, ergibt rdf:langString
Job-shop scheduling, the job-shop problem (JSP) or job-shop scheduling problem (JSSP) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. In a general job scheduling problem, we are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on m machines with varying processing power, while trying to minimize the makespan – the total length of the schedule (that is, when all the jobs have finished processing). In the specific variant known as job-shop scheduling, each job consists of a set of operations O1, O2, ..., On which need to be processed in a specific order (known as precedence constraints). Each operation has a specific machine that it needs to be processed on and only one operation in a job c rdf:langString
Теория расписаний — раздел дискретной математики, занимающийся проблемами упорядочения. В общем случае проблемы формулируются так:Задано некоторое множество работ (требований) с определённым набором характеристик: длительность обработки требования (простейший случай), стоимость обработки требования, момент поступления требования, директивный срок окончания обслуживания требования. Задано некоторое множество машин (приборов) , на которых требования должны обслуживаться в соответствии с некоторым порядком. Задачи теории расписаний можно разделить на две группы: rdf:langString
Теорія розкладів — розділ дискретної математики, що вивчає проблеми впорядкування. У загальному випадку проблеми формулюються так: Дано деяку множину робіт (вимог) з певним набором характеристик: тривалість опрацювання вимоги (найпростіший випадок), вартість опрацювання вимоги, момент надходження вимоги, директивний термін закінчення опрацювання вимоги. Задано деяку множину машин (приладів) , на яких вимоги мають опрацьовуватися відповідно до деякого порядку. Задачі теорії розкладів можна розділити на дві групи: rdf:langString
rdf:langString Job Shop
rdf:langString Séquençage de tâches
rdf:langString Job-shop scheduling
rdf:langString Job sequencing
rdf:langString Теория расписаний
rdf:langString Теорія розкладів
xsd:integer 16384086
xsd:integer 1109363089
rdf:langString Unter einem Job Shop versteht man in der Maschinenbelegungsplanung eine Klasse von Modellen, bei denen auf m Maschinen n Aufträge zu fertigen sind. Ein Auftrag besteht dabei aus einer Folge von g Arbeitsgängen, die auf bestimmten Maschinen bearbeitet werden müssen. Dabei kann jeder Auftrag grundsätzlich auch mehrmals auf derselben Maschine bearbeitet werden oder auch manche Maschinen auslassen. Es handelt sich somit um Modelle von Produktionssystemen mit Werkstattfertigung. Wenn die Folge der Arbeitsgänge für jeden Auftrag identisch ist, handelt es sich um einen Flow-Shop, der ein Modell der Fließproduktion darstellt. Wird auf jeder Maschine die gleiche Folge von Aufträgen bearbeitet, handelt es sich um einen Permutations-Job Shop. Für den Fall, dass nur eine Maschine vorhanden ist, ergibt sich ein Ein-Maschinen Problem; falls die Aufträge aus nur einem Arbeitsgang bestehen, der auf einer beliebigen Maschine zu bearbeiten ist, handelt es sich um ein Maschinenbelegungsproblem mit parallelen Maschinen.
rdf:langString Job-shop scheduling, the job-shop problem (JSP) or job-shop scheduling problem (JSSP) is an optimization problem in computer science and operations research. It is a variant of optimal job scheduling. In a general job scheduling problem, we are given n jobs J1, J2, ..., Jn of varying processing times, which need to be scheduled on m machines with varying processing power, while trying to minimize the makespan – the total length of the schedule (that is, when all the jobs have finished processing). In the specific variant known as job-shop scheduling, each job consists of a set of operations O1, O2, ..., On which need to be processed in a specific order (known as precedence constraints). Each operation has a specific machine that it needs to be processed on and only one operation in a job can be processed at a given time. A common relaxation is the flexible job shop, where each operation can be processed on any machine of a given set (the machines in each set are identical). The name originally came from the scheduling of jobs in a job shop, but the theme has wide applications beyond that type of instance. This problem is one of the best known combinatorial optimization problems, and was the first problem for which competitive analysis was presented, by Graham in 1966. Best problem instances for basic model with makespan objective are due to Taillard. In the standard three-field notation for optimal job scheduling problems, the job-shop variant is denoted by J in the first field. For example, the problem denoted by " J3||" is a 3-machines job-shop problem with unit processing times, where the goal is to minimize the maximum completion time.
rdf:langString Le séquençage de tâches (en anglais job sequencing) est un des nombreux modèles d'ordonnancement d'atelier de production. En informatique théorique, et notamment en complexité des algorithmes, c'est la formulation d'un problème particulier d'ordonnancement considéré par Richard Karp dans sa célèbre description des 21 problèmes NP-complets.
rdf:langString Job sequencing is een probleem uit de theoretische computerwetenschap en combinatoriek.
rdf:langString Теория расписаний — раздел дискретной математики, занимающийся проблемами упорядочения. В общем случае проблемы формулируются так:Задано некоторое множество работ (требований) с определённым набором характеристик: длительность обработки требования (простейший случай), стоимость обработки требования, момент поступления требования, директивный срок окончания обслуживания требования. Задано некоторое множество машин (приборов) , на которых требования должны обслуживаться в соответствии с некоторым порядком. Ставится задача дискретной оптимизации: построить расписание, минимизирующее время выполнения работ, стоимость работ и т. п. Расписание — указание, на каких машинах и в какое время должны обслуживаться требования (выполняться работы). Задачи теории расписаний можно разделить на две группы: * Задачи с прерываниями. В любой момент обслуживание требования на машине может быть прервано (с возможностью завершения позже на той же или другой машине) ради обслуживания другого требования. * задачи без прерываний — каждое требование на машине обслуживается от начала до конца без прерываний. Существуют различные варианты задач теории расписаний, часть из них является NP-полными, часть принадлежит к классу полиномиальных задач, для части задач так и не удалось доказать принадлежности к какому-либо классу сложности. Существует гипотеза, что задача, допускающая прерывания, не сложнее задачи без прерываний. Для большинства задач она соблюдается, кроме одной, где для варианта без прерывания доказана его принадлежность к классу полиномиальных задач, в то время как для аналогичной задачи с прерываниями не существует доказательств принадлежности к какому-либо классу сложности. По дисциплине выполнения работ на машинах можно выделить четыре основные класса задач: 1. * Open shop, открытая линия — для каждого требования задано своё подмножество машин, на каждой из которых оно должно обслуживаться некоторое время. Порядок обслуживания на этих машинах произвольный. Задаются разнообразные целевые функции. 2. * Job shop, рабочий цех — для каждого требования задано своё упорядоченное подмножество машин (маршрут), на которых оно должно обслуживаться в заданном порядке. Задаются разнообразные целевые функции. 3. * Flow shop, потоковая линия — все машины упорядочены — и каждое требование проходит все машины в этом порядке. Расписание задано перестановкой требований. Как правило, минимизируется общее время обслуживания требований. 4. * Задача с директивными сроками — для каждого требования задан момент поступления, время обслуживания и директивный срок окончания обслуживания. Порядок обслуживания на приборах произвольный. Необходимо найти расписание, соблюдающее директивные сроки. При существовании такого расписания можно ставить задачу минимизации числа прерываний. Последняя задача называется одностадийной, три первые — многостадийными, поскольку для каждого требования задано несколько стадий или операций обслуживания на разных приборах. Возможны разнообразные комбинации ограничений и дисциплин обслуживания, но полиномиальные по времени выполнения алгоритмы известны только для простейших задач из этих классов. В частности, для задачи Flow shop на двух машинах существует алгоритм Джонсона временной сложности , который строит расписание с минимальным общим временем обслуживания. Для задачи с директивными сроками с произвольным числом приборов и прерываниями обслуживания существует алгоритм временной сложности , который строит расписание соблюдающее директивные сроки. Решением задач Open shop и Job shop с одним прибором без прерываний является некоторая перестановка требований и для произвольной целевой функции эти задачи NP-полны. Но для некоторых конкретных целевых функций найдены полиномиальные алгоритмы. Задачи теории расписаний (календарного планирования), записанные в непрерывном времени, имеют, как правило, бесконечное множество допустимых решений. Метод упорядочения позволяет свести задачи теории расписаний к задачам оптимизации на конечных множествах перестановок работ. Сформулирована общая постановка задачи теории расписаний (календарного планирования) в непрерывном времени, в которой компоненты решений описываются с помощью целочисленных функций времени и которая может быть решена методом упорядочения. Два способа сведения исходных задач к задачам упорядочения основаны на понятиях компактных (active) и квазикомпактных (semiactive) решений. В указанном выше препринте В. В. Шмелёва понятия компактных и квазикомпактных решений обобщены и на этой основе предложено новое понятие монотонных решений. Каждое монотонное решение является и компактным, и квазикомпактным одновременно, поэтому таких решений, как правило, меньше. Это упрощает решение задач упорядочения. Для описания динамических задач распределения ресурсов со сложными запаздываниями, в том числе с векторными и распределёнными, к которым относятся и задачи теории расписаний (календарного планирования), Шмелёв В. В. в 1983 г. впервые использовал в неявном виде и в непрерывном времени операцию свёртки. В дальнейшем он использовал эту операцию в явном виде и для дискретного времени и сформулировал общую постановку задачи теории расписаний (календарного планирования) в виде задачи линейного динамического программирования со свёртками. Эта постановка позволяет просто и компактно описывать большое количество динамических задач, в том числе и с целочисленными переменными. Шмелёв В. В. распространил свои результаты по методу точных штрафных функций на данную постановку.
rdf:langString Теорія розкладів — розділ дискретної математики, що вивчає проблеми впорядкування. У загальному випадку проблеми формулюються так: Дано деяку множину робіт (вимог) з певним набором характеристик: тривалість опрацювання вимоги (найпростіший випадок), вартість опрацювання вимоги, момент надходження вимоги, директивний термін закінчення опрацювання вимоги. Задано деяку множину машин (приладів) , на яких вимоги мають опрацьовуватися відповідно до деякого порядку. Ставиться задача дискретної оптимізації: побудувати розклад, який мінімізує час виконання робіт, вартість робіт тощо. Розклад — вказівка, на яких машинах і в який час мають опрацьовуватися вимоги (виконуватися роботи). Задачі теорії розкладів можна розділити на дві групи: * Задачі з перериваннями: у будь-який момент опрацювання вимоги на машині можна перервати (з можливістю завершення пізніше на тій самій або іншій машині) задля опрацювання іншої вимоги. * Задачі без переривань: кожна вимога на машині опрацьовується від початку до кінця без переривань. Існують різні варіанти задач теорії розкладів, частина з них є NP-повними, частина належить до класу поліноміальних задач, для частини задач так і не вдалося довести належність до якогось із класів складності. Існує гіпотеза, що задача, яка допускає переривання, не складніша від задачі без переривань. Для більшості задач вона справджується, крім однієї, де для варіанту без переривання доведено його належність до класу поліноміальних задач, тоді як для аналогічної задачі з перериваннями не існує доведення належності до якогось із класів складності. За дисципліною виконання робіт на машинах можна виділити чотири основні класи задач: 1. * Відкрита лінія (англ. Open shop) — для кожної вимоги задано свою підмножину машин, на кожній з яких вона має опрацьовуватися протягом певного часу. Порядок опрацювання на цих машинах довільний. Задаються різноманітні цільові функції. 2. * Робочий цех (англ. Job shop) — для кожної вимоги задано свою впорядковану підмножину машин (маршрут), на яких вона має опрацьовуватися в заданому порядку. Задаються різноманітні цільові функції. 3. * Flow shop, потокова лінія — всі машини впорядковано — і кожна вимога проходить всі машини в цьому порядку. Розклад задано перестановкою вимог. Як правило, мінімізується загальний час опрацювання вимог. 4. * Задача з директивними термінами — для кожної вимоги задано момент надходження, час опрацювання і директивний термін закінчення опрацювання. Порядок опрацювання на машинах довільний. Необхідно знайти розклад, за якого буде дотримано директивні терміни. При існуванні такого розкладу можна ставити задачу мінімізації числа переривань. Останню задачу називають одностадійною, три перші — багатостадійними, оскільки для кожної з вимог задано кілька стадій або операцій опрацювання на різних машинах. Можливі різноманітні комбінації обмежень і дисциплін опрацювання, але поліноміальні за часом виконання алгоритми відомі тільки для найпростіших задач із цих класів. Зокрема, для задачі «Потокова лінія» на двох машинах існує алгоритм Джонсона з часовою складністю , який будує розклад з мінімальним загальним часом опрацювання. Для задачі з директивними термінами з довільним числом приладів і перериваннями опрацювання існує алгоритм з часовою складністю , який будує розклад з дотриманням директивних термінів. Розв'язком задач «Відкрита лінія» і «Робочий цех» з одним приладом без переривань є деяка перестановка вимог і для довільної цільової функції ці задачі NP-повні. Але для деяких конкретних цільових функцій знайдено поліноміальні алгоритми. Задачі теорії розкладів (календарного планування), записані в неперервному часі, мають, як правило, безліч допустимих розв'язків. Метод упорядкування дозволяє звести задачі теорії розкладів до задач оптимізації на скінченних множинах перестановок робіт. Сформульовано загальну постановку задачі теорії розкладів (календарного планування) в неперервному часі, в якій компоненти розв'язків описують за допомогою цілочисельних функцій часу і яку можна розв'язати методом упорядкування. Два способи зведення початкових задач до задач упорядкування ґрунтуються на поняттях компактних (англ. active) і квазікомпактних (англ. semiactive) розв'язків. У зазначеному вище препринті поняття компактних і квазікомпактних розв'язків узагальнено і на цій основі запропоновано нове поняття монотонних розв'язків. Кожен монотонний розв'язок є і компактним, і квазікомпактним одночасно, тому таких розв'язків, як правило, менше. Це спрощує розв'язування задач упорядкування. Для опису динамічних задач розподілу ресурсів зі складними запізненнями, зокрема з векторними і розподіленими, до яких належать і задачі теорії розкладів (календарного планування), Шмельов В. В. 1983 року вперше використав у неявному вигляді і в неперервному часі операцію згортки. Надалі він використовував цю операцію в явному вигляді і для дискретного часу і сформулював загальну постановку задачі теорії розкладів (календарного планування) у вигляді задачі лінійного динамічного програмування зі згортками. Ця постановка дозволяє просто і компактно описувати багато динамічних задач, зокрема і з цілочисельними змінними. Шмельов В. В. поширив свої результати щодо методу точних штрафних функцій на цю постановку.
xsd:nonNegativeInteger 18861

data from the linked data cloud