JSJ decomposition

http://dbpedia.org/resource/JSJ_decomposition

Die Jaco-Shalen-Johannson-Zerlegung, abgekürzt JSJ-Zerlegung, benannt nach William Jaco, Peter Shalen und Klaus Johannson, ist eine Aussage aus der Topologie der 3-Mannigfaltigkeiten. rdf:langString
In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: Irreducible orientable closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isotopy) minimal collection of disjointly embedded incompressible tori such that each component of the 3-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered. The acronym JSJ is for William Jaco, Peter Shalen, and . The first two worked together, and the third worked independently. rdf:langString
In geometria la decomposizione JSJ è un teorema riguardante le 3-varietà. Il nome è legato alle iniziali dei tre matematici che formularono il teorema alla fine degli anni settanta, e cioè , e . Il teorema garantisce che ogni 3-varietà irriducibile si decompone lungo tori in modo unico. Per questo è anche chiamato teorema di decomposizione lungo tori. Può essere interpretato come una seconda decomposizione, dopo quella lungo sfere garantita dal teorema di Kneser-Milnor. Il teorema è un ingrediente fondamentale nella formulazione della congettura di geometrizzazione di Thurston. rdf:langString
rdf:langString JSJ-Zerlegung
rdf:langString JSJ decomposition
rdf:langString Decomposizione JSJ
xsd:integer 228599
xsd:integer 1091260766
rdf:langString InternetArchiveBot
rdf:langString January 2020
rdf:langString yes
rdf:langString Die Jaco-Shalen-Johannson-Zerlegung, abgekürzt JSJ-Zerlegung, benannt nach William Jaco, Peter Shalen und Klaus Johannson, ist eine Aussage aus der Topologie der 3-Mannigfaltigkeiten.
rdf:langString In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem: Irreducible orientable closed (i.e., compact and without boundary) 3-manifolds have a unique (up to isotopy) minimal collection of disjointly embedded incompressible tori such that each component of the 3-manifold obtained by cutting along the tori is either atoroidal or Seifert-fibered. The acronym JSJ is for William Jaco, Peter Shalen, and . The first two worked together, and the third worked independently.
rdf:langString In geometria la decomposizione JSJ è un teorema riguardante le 3-varietà. Il nome è legato alle iniziali dei tre matematici che formularono il teorema alla fine degli anni settanta, e cioè , e . Il teorema garantisce che ogni 3-varietà irriducibile si decompone lungo tori in modo unico. Per questo è anche chiamato teorema di decomposizione lungo tori. Può essere interpretato come una seconda decomposizione, dopo quella lungo sfere garantita dal teorema di Kneser-Milnor. Il teorema è un ingrediente fondamentale nella formulazione della congettura di geometrizzazione di Thurston.
xsd:nonNegativeInteger 4602

data from the linked data cloud