Isospectral

http://dbpedia.org/resource/Isospectral

Dalam matematika, dua disebut isospektral atau kospektral jika mereka memiliki yang sama. Secara keseluruhan, mereka memiliki beberapa set dari nilai eigen, saat itu dihitung dengan . Teori operator isospektral bergantung pada tanda yang berbeda pada apakah ruang tersebut adalah dimensi terbatas atau tak terbatas. Dalam dimensi terbatas, hal tersebut secara esensial sejalan dengan matriks-matriks persegi. rdf:langString
In mathematics, two linear operators are called isospectral or cospectral if they have the same spectrum. Roughly speaking, they are supposed to have the same sets of eigenvalues, when those are counted with multiplicity. The theory of isospectral operators is markedly different depending on whether the space is finite or infinite dimensional. In finite-dimensions, one essentially deals with square matrices. rdf:langString
rdf:langString Isospektral
rdf:langString Isospectral
xsd:integer 386031
xsd:integer 1109503569
rdf:langString In mathematics, two linear operators are called isospectral or cospectral if they have the same spectrum. Roughly speaking, they are supposed to have the same sets of eigenvalues, when those are counted with multiplicity. The theory of isospectral operators is markedly different depending on whether the space is finite or infinite dimensional. In finite-dimensions, one essentially deals with square matrices. In infinite dimensions, the spectrum need not consist solely of isolated eigenvalues. However, the case of a compact operator on a Hilbert space (or Banach space) is still tractable, since the eigenvalues are at most countable with at most a single limit point λ = 0. The most studied isospectral problem in infinite dimensions is that of the Laplace operator on a domain in R2. Two such domains are called isospectral if their Laplacians are isospectral. The problem of inferring the geometrical properties of a domain from the spectrum of its Laplacian is often known as hearing the shape of a drum.
rdf:langString Dalam matematika, dua disebut isospektral atau kospektral jika mereka memiliki yang sama. Secara keseluruhan, mereka memiliki beberapa set dari nilai eigen, saat itu dihitung dengan . Teori operator isospektral bergantung pada tanda yang berbeda pada apakah ruang tersebut adalah dimensi terbatas atau tak terbatas. Dalam dimensi terbatas, hal tersebut secara esensial sejalan dengan matriks-matriks persegi.
xsd:nonNegativeInteger 9898

data from the linked data cloud