Intersection (set theory)

http://dbpedia.org/resource/Intersection_(set_theory) an entity of type: Thing

La intersecció és una operació entre conjunts. Aquesta operació crea el conjunt, anomenat conjunt intersecció, format pels elements que pertanyen a la vegada a tots els conjunts que s'intersequen. S'expressa amb el símbol . Per exemple:Donat i , si definim , llavors . es llegeix: el conjunt C és igual a la intersecció dels conjunts A i B. També es pot llegir: C és el conjunt intersecció dels conjunts A i B. rdf:langString
في الجبر وفي الرياضيات عموما، التقاطع (بالإنجليزية: Intersection )‏ هو مجموعة العناصر المشتركة بين مجموعتين. يُشار إلى تقاطع المجموعتين A وB ب A ∩ B. rdf:langString
V matematice se jako průnik dvou nebo více množin označuje taková množina, která obsahuje pouze ty prvky, které se nalézají ve všech těchto množinách. Průnik množin A a B se označuje symbolem A ∩ B. rdf:langString
Τομή δύο μη κενών συνόλων Α και Β ενός συνόλου αναφοράς Ω ονομάζουμε το σύνολο που αποτελείται από τα κοινά στοιχεία των συνόλων Α και Β. Η τομή των Α και Β συμβολίζεται με και ορίζεται ως: Για παράδειγμα: Αν Α={1,2,3,α,β,γ} και Β={1,3,4,5,6,α,γ} είναι Α Β={1,3,α,γ} Αν Α={1,2,3,4} και Β={5,6,α,γ} είναι όπου είναι το κενό σύνολο, δηλαδή το σύνολο το οποίο δεν έχει στοιχεία. Ακόμη για τα σύνολα έχουμε: είναι ξένα (disjoint) μεταξύ τους. rdf:langString
En aroteorio, la komunaĵo de du aroj A kaj B estas la aro, kiu entenas precize tiujn elementojn, kiuj apartenas kaj al A kaj al B. La komunaĵon de A kaj B oni signas per A ∩ B (legu: a kaj bo). rdf:langString
In set theory, the intersection of two sets and denoted by is the set containing all elements of that also belong to or equivalently, all elements of that also belong to rdf:langString
Dalam matematika, irisan dari dua himpunan dan adalah himpunan yang memuat semua anggota dari juga milik (atau, semua anggota dari yang juga milik ). Irisan dari kedua himpunan tersebut dinyatakan secara matematis: , rdf:langString
数学において集合族の共通部分(きょうつうぶぶん、英: intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、meet)、積集合(せきしゅうごう)、積(せき)などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。 rdf:langString
집합론에서, 두 집합 A와 B의 교집합(交集合, 영어: intersection) A ∩ B는 그 두 집합이 공통으로 포함하는 원소로 이루어진 집합이다. 예를 들어, 두 집합 {★, ●, ◆}, {●, ◆, ♥}의 교집합은 {●, ◆}이다. 두 집합에 교집합을 취하면 아무 원소도 남지 않게 되는 경우도 있다. 짝수와 홀수의 집합의 교집합이 공집합인 것이 그 예이다. 이런 두 집합을 서로소 집합이라고 한다. 셋 이상의 집합, 나아가 무한히 많은 집합들에게도 교집합을 취할 수 있다. 집합 여럿의 교집합은 동시에 그들 모두의 원소인 대상들을 모아놓은 집합이다. 벤 다이어그램에서, 교집합은 여러 원의 겹친 부분으로 표현된다. (오른쪽 그림) 집합을 공리화한 체르멜로-프렝켈 집합론에서, 교집합의 합리성은 과 에 따라 보장된다. rdf:langString
In matematica, e in particolare in teoria degli insiemi, l'intersezione (simbolo ) di due insiemi è l'insieme degli elementi che appartengono a entrambi gli insiemi contemporaneamente. L'intersezione è un'operazione binaria. Nell'algebra booleana corrisponde all'operatore AND e, in logica, alla congiunzione. rdf:langString
Część wspólna, przekrój, iloczyn mnogościowy, przecięcie – zbiór zawierający te i tylko te elementy, które należą jednocześnie do obu/wszystkich wybranych zbiorów. Część wspólną definiuje się także dla dowolnych niepustych rodzin zbiorów. rdf:langString
Em teoria dos conjuntos, a interseção (pt-BR) ou intersecção (pt) (AO 1990: interseção ou intersecção), é um conjunto de elementos que, simultaneamente, pertencem a dois ou mais conjuntos, representado por ∩. Por exemplo, se o conjunto A possui os elementos {1,2,3,4,5} e o conjunto B possui os elementos {2,4,6,8}, então interseção do conjunto A com o conjunto B será igual a {2,4} . rdf:langString
Snittet eller skärningen av två mängder, A och B, är mängden av alla element som finns i både A och B, det vill säga, inte i enbart A och inte i enbart B men tillhör både A och B. Snittet av A och B skrivs A ∩ B. Av definitionen framgår att för alla A gäller A ∩ ∅ = ∅ och A ∩ A = A där ∅ är symbolen för tomma mängden. rdf:langString
Пересече́ние мно́жеств в теории множеств — это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Пересечение двух множеств и обычно обозначается , но в редких случаях может обозначаться . rdf:langString
В математиці, зокрема в теорії множин, пере́тином двох множин A і B називається множина, яка складається з усіх елементів множини A, які водночас належать і множині B та навпаки (всі елементи множини B, які належать A) і тільки них. Вона і позначається як "A∩B та є підмножиною обох. Формально: ; Якщо одна множина є підмножиною другої, то їхній перетин дорівнює першій множині: Якщо перетин двох множин A і B є порожнім, тобто не містить спільних елементів, то кажуть, що такі множини не перетинаються. Цей факт позначається як A∩B = Ø. Приклади: * {1, 2, 3} ∩ {2, 3, 4} = {2, 3}. * {1, 2} ∩ {3, 4} = Ø. rdf:langString
数学上,两个集合和的交集是含有所有既属于又属于的元素,而没有其他元素的集合。 rdf:langString
Matematikan, multzo-teoriaren barruan, ebaketa multzoen artean definitzen den eragiketa bat da. Eragiketa horrek multzo bat sortuko du, ebakidura multzoa deiturikoa, zeinek multzoetako elementu komunak biltzen dituen. Ebaketa adierazteko, ikurra erabiltzen da, eta ebaki irakurtzen da. Izan bitez bi multzo, orduan, A eta B ren ebakidura, bidez adierazten da (A ebaki B irakurtzen da), A-n eta B-n aldi berean dauden elementuek osatzen dute; . Adibidez, B = {1, 2, 3, 4, 8, 9} eta A = {3, 4, 5, 6} badira, orduan A ∩ B = {3, 4}. rdf:langString
En teoría de conjuntos, la intersección de dos (o más) conjuntos es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos de partida. Por ejemplo, dado el conjunto de los números pares P y el conjunto de los cuadrados C de números naturales, su intersección es el conjunto de los cuadrados pares. En otras palabras: Cómo, por ejemplo, si A = { a, b, c, d, e, f} y B = { a, e, i, o, u}, entonces la intersección de dichos conjuntos estará formada por todos los elementos que estén a la vez en los dos conjuntos, esto es: A∩B = { a, e} rdf:langString
Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté A ∩ B, dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si A ∩ B est l'ensemble vide ∅. A est inclus dans B si et seulement si A ∩ B = A. rdf:langString
In de verzamelingenleer is de doorsnede, of intersectie van een aantal verzamelingen de verzameling die bestaat uit de gemeenschappelijke elementen van de samenstellende verzamelingen. De doorsnede van de verzamelingen en wordt genoteerd als . Het bepalen van de doorsnede van twee verzamelingen en wordt ook het nemen van de doorsnede van die twee genoemd. Het nemen van de doorsnede van twee verzamelingen is een wiskundige bewerking op die twee verzamelingen. Twee andere mogelijke bewerkingen op twee verzamelingen zijn het nemen van de vereniging en het verschil. rdf:langString
rdf:langString تقاطع (نظرية المجموعات)
rdf:langString Intersecció
rdf:langString Průnik
rdf:langString Schnittmenge
rdf:langString Τομή συνόλων
rdf:langString Komunaĵo
rdf:langString Intersección de conjuntos
rdf:langString Ebaketa (multzo-teoria)
rdf:langString Irisan (teori himpunan)
rdf:langString Intersezione (insiemistica)
rdf:langString Intersection (set theory)
rdf:langString Intersection (mathématiques)
rdf:langString 共通部分 (数学)
rdf:langString 교집합
rdf:langString Doorsnede (verzamelingenleer)
rdf:langString Interseção
rdf:langString Część wspólna
rdf:langString Snitt
rdf:langString Пересечение множеств
rdf:langString Перетин множин
rdf:langString 交集
rdf:langString Intersection
xsd:integer 23476429
xsd:integer 1109673546
rdf:langString The intersection is the set of elements that exists in both set and set .
rdf:langString The intersection of two sets and represented by circles. is in red.
rdf:langString Intersection
rdf:langString Intersection
rdf:langString La intersecció és una operació entre conjunts. Aquesta operació crea el conjunt, anomenat conjunt intersecció, format pels elements que pertanyen a la vegada a tots els conjunts que s'intersequen. S'expressa amb el símbol . Per exemple:Donat i , si definim , llavors . es llegeix: el conjunt C és igual a la intersecció dels conjunts A i B. També es pot llegir: C és el conjunt intersecció dels conjunts A i B.
rdf:langString في الجبر وفي الرياضيات عموما، التقاطع (بالإنجليزية: Intersection )‏ هو مجموعة العناصر المشتركة بين مجموعتين. يُشار إلى تقاطع المجموعتين A وB ب A ∩ B.
rdf:langString V matematice se jako průnik dvou nebo více množin označuje taková množina, která obsahuje pouze ty prvky, které se nalézají ve všech těchto množinách. Průnik množin A a B se označuje symbolem A ∩ B.
rdf:langString Τομή δύο μη κενών συνόλων Α και Β ενός συνόλου αναφοράς Ω ονομάζουμε το σύνολο που αποτελείται από τα κοινά στοιχεία των συνόλων Α και Β. Η τομή των Α και Β συμβολίζεται με και ορίζεται ως: Για παράδειγμα: Αν Α={1,2,3,α,β,γ} και Β={1,3,4,5,6,α,γ} είναι Α Β={1,3,α,γ} Αν Α={1,2,3,4} και Β={5,6,α,γ} είναι όπου είναι το κενό σύνολο, δηλαδή το σύνολο το οποίο δεν έχει στοιχεία. Ακόμη για τα σύνολα έχουμε: είναι ξένα (disjoint) μεταξύ τους.
rdf:langString En aroteorio, la komunaĵo de du aroj A kaj B estas la aro, kiu entenas precize tiujn elementojn, kiuj apartenas kaj al A kaj al B. La komunaĵon de A kaj B oni signas per A ∩ B (legu: a kaj bo).
rdf:langString En teoría de conjuntos, la intersección de dos (o más) conjuntos es una operación que resulta en otro conjunto que contiene los elementos comunes a los conjuntos de partida. Por ejemplo, dado el conjunto de los números pares P y el conjunto de los cuadrados C de números naturales, su intersección es el conjunto de los cuadrados pares. En otras palabras: Cómo, por ejemplo, si A = { a, b, c, d, e, f} y B = { a, e, i, o, u}, entonces la intersección de dichos conjuntos estará formada por todos los elementos que estén a la vez en los dos conjuntos, esto es: A∩B = { a, e} La intersección de conjuntos se denota por el símbolo ∩ por lo que D = P ∩ C.
rdf:langString Matematikan, multzo-teoriaren barruan, ebaketa multzoen artean definitzen den eragiketa bat da. Eragiketa horrek multzo bat sortuko du, ebakidura multzoa deiturikoa, zeinek multzoetako elementu komunak biltzen dituen. Ebaketa adierazteko, ikurra erabiltzen da, eta ebaki irakurtzen da. Izan bitez bi multzo, orduan, A eta B ren ebakidura, bidez adierazten da (A ebaki B irakurtzen da), A-n eta B-n aldi berean dauden elementuek osatzen dute; . Grafika edo irudiari erreparatuz, ebakidura adierazteko beste modu bat aurki dezakegu; non A eta B-ren bildura den, A multzoari B multzoko elementuak kentzea den eta B multzoari, A multzoko elementuak kentzea den. Adibidez, B = {1, 2, 3, 4, 8, 9} eta A = {3, 4, 5, 6} badira, orduan A ∩ B = {3, 4}. Bi multzoen ebakidura multzo hutsa denean, hau da, komunean elementurik ez dituztenean, izan bitez bi multzo , orduan, multzo hauek disjuntuak direla esaten da.
rdf:langString In set theory, the intersection of two sets and denoted by is the set containing all elements of that also belong to or equivalently, all elements of that also belong to
rdf:langString Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté A ∩ B, dit « A inter B », qui contient tous les éléments appartenant à la fois à A et à B, et seulement ceux-là. A et B sont disjoints si et seulement si A ∩ B est l'ensemble vide ∅. A est inclus dans B si et seulement si A ∩ B = A. En analyse réelle, les points d'intersection des courbes représentatives de deux fonctions interviennent dans la description de leur position relative.
rdf:langString Dalam matematika, irisan dari dua himpunan dan adalah himpunan yang memuat semua anggota dari juga milik (atau, semua anggota dari yang juga milik ). Irisan dari kedua himpunan tersebut dinyatakan secara matematis: ,
rdf:langString 数学において集合族の共通部分(きょうつうぶぶん、英: intersection)とは、与えられた集合の集まり(族)全てに共通に含まれる元を全て含み、それ以外の元は含まない集合のことである。共通集合(きょうつうしゅうごう)、交叉(こうさ、交差)、交わり(まじわり、meet)、積集合(せきしゅうごう)、積(せき)などとも呼ばれる。ただし、積集合は直積集合の意味で用いられることが多い。
rdf:langString 집합론에서, 두 집합 A와 B의 교집합(交集合, 영어: intersection) A ∩ B는 그 두 집합이 공통으로 포함하는 원소로 이루어진 집합이다. 예를 들어, 두 집합 {★, ●, ◆}, {●, ◆, ♥}의 교집합은 {●, ◆}이다. 두 집합에 교집합을 취하면 아무 원소도 남지 않게 되는 경우도 있다. 짝수와 홀수의 집합의 교집합이 공집합인 것이 그 예이다. 이런 두 집합을 서로소 집합이라고 한다. 셋 이상의 집합, 나아가 무한히 많은 집합들에게도 교집합을 취할 수 있다. 집합 여럿의 교집합은 동시에 그들 모두의 원소인 대상들을 모아놓은 집합이다. 벤 다이어그램에서, 교집합은 여러 원의 겹친 부분으로 표현된다. (오른쪽 그림) 집합을 공리화한 체르멜로-프렝켈 집합론에서, 교집합의 합리성은 과 에 따라 보장된다.
rdf:langString In matematica, e in particolare in teoria degli insiemi, l'intersezione (simbolo ) di due insiemi è l'insieme degli elementi che appartengono a entrambi gli insiemi contemporaneamente. L'intersezione è un'operazione binaria. Nell'algebra booleana corrisponde all'operatore AND e, in logica, alla congiunzione.
rdf:langString In de verzamelingenleer is de doorsnede, of intersectie van een aantal verzamelingen de verzameling die bestaat uit de gemeenschappelijke elementen van de samenstellende verzamelingen. De doorsnede van de verzamelingen en wordt genoteerd als . Het bepalen van de doorsnede van twee verzamelingen en wordt ook het nemen van de doorsnede van die twee genoemd. Het nemen van de doorsnede van twee verzamelingen is een wiskundige bewerking op die twee verzamelingen. Als twee verzamelingen een lege doorsnede hebben, noemt men ze disjunct. Als ze een niet-lege doorsnede hebben, wordt soms gezegd dat ze elkaar snijden. Twee andere mogelijke bewerkingen op twee verzamelingen zijn het nemen van de vereniging en het verschil.
rdf:langString Część wspólna, przekrój, iloczyn mnogościowy, przecięcie – zbiór zawierający te i tylko te elementy, które należą jednocześnie do obu/wszystkich wybranych zbiorów. Część wspólną definiuje się także dla dowolnych niepustych rodzin zbiorów.
rdf:langString Em teoria dos conjuntos, a interseção (pt-BR) ou intersecção (pt) (AO 1990: interseção ou intersecção), é um conjunto de elementos que, simultaneamente, pertencem a dois ou mais conjuntos, representado por ∩. Por exemplo, se o conjunto A possui os elementos {1,2,3,4,5} e o conjunto B possui os elementos {2,4,6,8}, então interseção do conjunto A com o conjunto B será igual a {2,4} .
rdf:langString Snittet eller skärningen av två mängder, A och B, är mängden av alla element som finns i både A och B, det vill säga, inte i enbart A och inte i enbart B men tillhör både A och B. Snittet av A och B skrivs A ∩ B. Av definitionen framgår att för alla A gäller A ∩ ∅ = ∅ och A ∩ A = A där ∅ är symbolen för tomma mängden.
rdf:langString Пересече́ние мно́жеств в теории множеств — это множество, которому принадлежат те и только те элементы, которые одновременно принадлежат всем данным множествам. Пересечение двух множеств и обычно обозначается , но в редких случаях может обозначаться .
rdf:langString В математиці, зокрема в теорії множин, пере́тином двох множин A і B називається множина, яка складається з усіх елементів множини A, які водночас належать і множині B та навпаки (всі елементи множини B, які належать A) і тільки них. Вона і позначається як "A∩B та є підмножиною обох. Формально: ; Якщо одна множина є підмножиною другої, то їхній перетин дорівнює першій множині: Якщо перетин двох множин A і B є порожнім, тобто не містить спільних елементів, то кажуть, що такі множини не перетинаються. Цей факт позначається як A∩B = Ø. Приклади: * {1, 2, 3} ∩ {2, 3, 4} = {2, 3}. * {1, 2} ∩ {3, 4} = Ø.
rdf:langString 数学上,两个集合和的交集是含有所有既属于又属于的元素,而没有其他元素的集合。
xsd:nonNegativeInteger 11372

data from the linked data cloud