Inscribed figure
http://dbpedia.org/resource/Inscribed_figure
En geometría, una figura inscrita es una forma que está encerrada y "encaja perfectamente" dentro de otra forma geométrica o sólido. Decir que la figura F está inscrita en la figura G equivale exactamente a decir que la figura G está circunscrita a la figura F. Un círculo o elipse inscrito en un polígono convexo (o una esfera o elipsoide inscrito en un poliedro convexo) es tangente a cada lado o cara de la figura exterior (véase para las variantes semánticas).
rdf:langString
Em geometria, uma figura inscrita, em termos intuitivos e com algumas exceções, é aquela que está "cercada" e "se encaixa perfeitamente" dentro de outra figura geométrica. No entanto, existem definições em que admite-se que a figura inscrita esteja, em parte, fora da outra figura (como exemplo, um polígono convexo inscrito em uma curva não convexa). As figuras consideradas podem ser tanto planas quanto espaciais. Contempla-se também figuras inscritas em curvas abertas, como a parábola.
rdf:langString
In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not
rdf:langString
初等幾何学において、平面図形や立体が内接(ないせつ、英: inscribe)するとは、それを内側に「ピッタリ収まる」ように包絡する別の図形や立体があることを意味する。「図形 F が図形 G に内接する」ことは「図形 G が図形 F に外接する」こととちょうど同じである。円や楕円が凸多角形に(あるいは球面や楕円体が凸多面体に)内接するとは、外側の図形の全ての辺(あるいは面)に接することを言う(同じ意味の別な言い回しは内接球面の項を参照)。円や楕円あるいは多角形に内接する多角形(または球面、楕円面あるいは多面体に内接する多面体)は、各頂点が外側の図形上にある。そして、外側の図形が多角形や多面体の場合には、内接多角形や内接多面体の頂点は、必ず外側の図形の辺上になければならない。内接図形の向きが一意である必要がないことは容易に理解されることで、なんとなれば外側の図形が円であるとき内接図形をどのように回転させようとももとの図形と合同な内接図形が得られることを見ればよい。 外側の図形の内接半径 (inradius; 内半径) あるいはは内接円(あるいは内接球)が存在すれば、その半径を言う。 他に用例として、テープリッツのでは、凸ですらない図形に対してさえ、その図形の上に四つすべての頂点が載っているような接正方形を考える。
rdf:langString
rdf:langString
Figura inscrita
rdf:langString
Inscribed figure
rdf:langString
内接図形
rdf:langString
Figura inscrita
xsd:integer
4470203
xsd:integer
1095126531
rdf:langString
En geometría, una figura inscrita es una forma que está encerrada y "encaja perfectamente" dentro de otra forma geométrica o sólido. Decir que la figura F está inscrita en la figura G equivale exactamente a decir que la figura G está circunscrita a la figura F. Un círculo o elipse inscrito en un polígono convexo (o una esfera o elipsoide inscrito en un poliedro convexo) es tangente a cada lado o cara de la figura exterior (véase para las variantes semánticas).
rdf:langString
In geometry, an inscribed planar shape or solid is one that is enclosed by and "fits snugly" inside another geometric shape or solid. To say that "figure F is inscribed in figure G" means precisely the same thing as "figure G is circumscribed about figure F". A circle or ellipse inscribed in a convex polygon (or a sphere or ellipsoid inscribed in a convex polyhedron) is tangent to every side or face of the outer figure (but see Inscribed sphere for semantic variants). A polygon inscribed in a circle, ellipse, or polygon (or a polyhedron inscribed in a sphere, ellipsoid, or polyhedron) has each vertex on the outer figure; if the outer figure is a polygon or polyhedron, there must be a vertex of the inscribed polygon or polyhedron on each side of the outer figure. An inscribed figure is not necessarily unique in orientation; this can easily be seen, for example, when the given outer figure is a circle, in which case a rotation of an inscribed figure gives another inscribed figure that is congruent to the original one. Familiar examples of inscribed figures include circles inscribed in triangles or regular polygons, and triangles or regular polygons inscribed in circles. A circle inscribed in any polygon is called its incircle, in which case the polygon is said to be a tangential polygon. A polygon inscribed in a circle is said to be a cyclic polygon, and the circle is said to be its circumscribed circle or circumcircle. The inradius or filling radius of a given outer figure is the radius of the inscribed circle or sphere, if it exists. The definition given above assumes that the objects concerned are embedded in two- or three-dimensional Euclidean space, but can easily be generalized to higher dimensions and other metric spaces. For an alternative usage of the term "inscribed", see the inscribed square problem, in which a square is considered to be inscribed in another figure (even a non-convex one) if all four of its vertices are on that figure.
rdf:langString
初等幾何学において、平面図形や立体が内接(ないせつ、英: inscribe)するとは、それを内側に「ピッタリ収まる」ように包絡する別の図形や立体があることを意味する。「図形 F が図形 G に内接する」ことは「図形 G が図形 F に外接する」こととちょうど同じである。円や楕円が凸多角形に(あるいは球面や楕円体が凸多面体に)内接するとは、外側の図形の全ての辺(あるいは面)に接することを言う(同じ意味の別な言い回しは内接球面の項を参照)。円や楕円あるいは多角形に内接する多角形(または球面、楕円面あるいは多面体に内接する多面体)は、各頂点が外側の図形上にある。そして、外側の図形が多角形や多面体の場合には、内接多角形や内接多面体の頂点は、必ず外側の図形の辺上になければならない。内接図形の向きが一意である必要がないことは容易に理解されることで、なんとなれば外側の図形が円であるとき内接図形をどのように回転させようとももとの図形と合同な内接図形が得られることを見ればよい。 よく知られた内接図形の例として、三角形や正多角形に内接する円や、円に内接する三角形や正多角形がある。任意の多角形に対して、それに内接する円を内接円 (incircle) と呼び、対する多角形を円外接多角形 (tangential polygon; 接多角形) と言う。円に内接する多角形は円内接多角形 (cyclic polygon) と言い、対する円をその外接円と呼ぶ。 外側の図形の内接半径 (inradius; 内半径) あるいはは内接円(あるいは内接球)が存在すれば、その半径を言う。 以上の定義は、考える幾何学的対象が二次元または三次元のユークリッド空間に埋め込まれていることを前提として与えられたものだが、高次元のユークリッド空間やほかの距離空間に埋め込まれる場合に関しては、一般化も容易である。 他に用例として、テープリッツのでは、凸ですらない図形に対してさえ、その図形の上に四つすべての頂点が載っているような接正方形を考える。
rdf:langString
Em geometria, uma figura inscrita, em termos intuitivos e com algumas exceções, é aquela que está "cercada" e "se encaixa perfeitamente" dentro de outra figura geométrica. No entanto, existem definições em que admite-se que a figura inscrita esteja, em parte, fora da outra figura (como exemplo, um polígono convexo inscrito em uma curva não convexa). As figuras consideradas podem ser tanto planas quanto espaciais. Contempla-se também figuras inscritas em curvas abertas, como a parábola.
xsd:nonNegativeInteger
4915