Inertial frame of reference

http://dbpedia.org/resource/Inertial_frame_of_reference an entity of type: Thing

Jako inerciální vztažná soustava se ve fyzice označuje taková vztažná soustava, v níž platí 1. Newtonův pohybový zákon, tj. těleso, na které nepůsobí žádná síla nebo výslednice sil je nulová, je v klidu nebo se pohybuje rovnoměrně přímočaře. Platí zde zákon setrvačnosti a každá vztažná soustava, je-li vzhledem k dané inerciální soustavě v klidu nebo pohybu rovnoměrném přímočarém, je rovněž inerciální. Jako příklad můžeme uvést stěny vagonu, který se pohybuje po přímé trati stálou rychlostí. Soustavy, v nichž neplatí 1. Newtonův pohybový zákon, se nazývají neinerciální vztažné soustavy. rdf:langString
Ένα αδρανειακό σύστημα αναφοράς είναι ένα σύστημα στο οποίο ισχύουν ο πρώτος και δεύτερος νόμος του Νεύτωνα για την κίνηση των σωμάτων. Ως εκ τούτου, σε ένα αδρανειακό σύστημα αναφοράς, ένα σώμα επιταχύνεται μόνο όταν μια δύναμη εφαρμόζεται πάνω του, και (σύμφωνα με τον πρώτο νόμο του Νεύτωνα για την κίνηση των σωμάτων), αν δεν εφαρμόζεται πάνω του καμία δύναμη, ένα σώμα που έχει μηδενική ταχύτητα θα συνεχίσει να ηρεμεί και ένα σώμα που κινείται θα συνεχίσει να κινείται με σταθερή ταχύτητα και ευθύγραμμα. rdf:langString
Kerangka acuan inersia adalah salah satu jenis kerangka acuan yang digunakan sebagai titik acuan dalam pengamatan fisika. Persyaratan suatu titik acuan dapat disebut sebagai kerangka acuan inersia ialah tidak mengalami percepatan gerak. Pada kerangka acuan inersia, hukum gerak Newton khususnya hukum pertama Newton dapat diterapkan. Kerangka acuan inersia juga berlaku pada setiap kerangka acuan yang memiliki kecepatan konstan dengan gaya gerak yang relatif. rdf:langString
관성좌표계(慣性座標系)는 고전 역학에서 뉴턴의 운동법칙 중 제1법칙이 성립하는 좌표계를 말한다. 즉, 관성 좌표계에서 아무런 힘도 작용하지 않는 물체는 정지해 있거나 등속 직선 운동을 한다. 따라서 일정한 속도를 갖는 모든 계(frame)가 관성 좌표계에 해당되며 모든 관성 좌표계에서 물리 법칙은 동일하게 적용할 수 있다. 만일 어떤 좌표계가 가속도를 가지고 있다면 그 좌표계 안의 물체는 아무런 힘이 작용하지 않을 때도 가속도를 갖게 되어 뉴턴의 1법칙에 어긋난다. 그러나 이것은 자연을 기술하는 수많은 형식들 중 뉴턴 역학이 선택되었기 때문이지 절대적인 것은 아니다. 만약 가속도를 갖는 좌표계를 기본 좌표계로 선택하였다면 물리 법칙은 다른 형태로 발전했을 것이며 힘의 정의도 달라졌을 것이다. 즉, 관성 좌표계는 자연계를 뉴턴 역학으로 기술하기 위한 가장 기본적인 장치이다. 또, 모든 관성 좌표계는 속도에 상관없이 갈릴레이 변환에 대하여 불변이라 정의하는데 이는 뉴턴 역학에서 절대공간과 절대시간이 전제가 됨을 의미한다. rdf:langString
慣性系(かんせいけい、ガリレイ系とも、英語: inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。物理学全般に関係する概念であるが、ニュートン力学および特殊相対性理論において特によく注目される。 力がはたらかないか、はたらいている力の和(合力)が 0 である物体がする運動を慣性運動といい、慣性系とは慣性運動をする物体と、それと共に運動する時計と物差しで測る時間・空間とをひとまとめにした概念である。慣性の法則により慣性運動は等速直線運動であるため、慣性系は直線座標系となる。したがって慣性系によって物体の運動状態を記述するとき、その物体は外力を受けない限り等速直線運動を行う。 ある慣性系 S1 に対して等速直線運動する座標系 S2 から見ると物体は外力を受けない限り等速直線運動を行うので、S2 は慣性系である。また、 S1 に対して減速している車に固定した座標系 S3 においては物体は外力を受けていなくても前向きの加速運動を行い、慣性の法則が成立しないので S3 は慣性系ではない。 rdf:langString
Ett inertialsystem eller en inertialram är koordinatsystem där Newtons första lag, tröghetslagen, gäller. Det betyder att krafter och accelerationer som eventuellt uppträder i beräkningar måste behandlas för sig. Alla inertialsystem är ekvivalenta och mekanikens lagar gäller i samtliga. Begreppet inertialsystem användes första gången av Ludwig Lange 1885. rdf:langString
在经典物理学与狭义相对论中,惯性参考系或惯性坐标系,简称为惯性系(英語:Inertial frame of reference)是指可以均匀且各向同性地描述空间,并且可以均匀描述时间的参考系。在惯性参考系内,系统内部的物理规律与系统外的因素无关。 所有的惯性系之间都在进行匀速平移运动。不同惯性系的测量结果可以通过简单的变换(伽利略变换或洛伦兹变换)相互转化。广义相对论中,在任意足够小以致时空曲率与潮汐力可以忽略的区域内,人们可以找到一组惯性系来近似描述这个区域。广义相对论中,非惯性系中的系统由于测地线运动原理不会受到外界影响。 物理定律在所有惯性系中形式一致。经典物理学与狭义相对论中,在非惯性系里,系统的物理规律会受到参考系相对于惯性系的加速度影响而发生变化。此时物体的受力要考虑惯性力。比如,落地的小球由于地球自转并不是完全沿直线落下。与地球一起运动的观察者必须考虑科里奥利力才能预测小球的水平运动情况。离心力是另一种与旋转参考系有关的惯性力。 rdf:langString
إطار مرجعي عطالي أو نظام مرجعي قصوري أو إطار إسناد قصوري هو عبارة عن نظام إحداثيات يعرّف بكونه ذو حركة عطالية (أي مختبر فيزيائي ساكن أو يتحرك حركة منتظمة وفي خط مستقيم بالنسبة لنا، ويسود فيه القصور الذاتي) . وهذا ما يميزه عن الإطار المرجعي اللاعطالي (المختبر)الذي يتحرك حركة متسارعة، أو في حركة دائرية). في الفيزياء، يعتبر الجسم يتحرك حركة عطالية (تحت تأثير عزم القصور الذاتي فقط) : إذا لم تكن هناك أي قوة خارجية مؤثرة عليه، وهذا ما يعرف بقانون نيوتن الأول للحركة. rdf:langString
D'acord amb la mecànica de Newton, un sistema inercial és un sistema no sotmès a cap força exterior i que, per tant, es desplaça a velocitat constant. Aquests sistemes són els únics que compleixen les tres lleis de Newton. En cas contrari, es diu que és un sistema de referència no inercial. Donat un sistema de referència inercial, un segon sistema de referència serà no inercial quan descrigui un moviment accelerat respecte al primer. L'acceleració del sistema no inercial pot ser deguda a: rdf:langString
En fiziko, inercia kadro de referenco (ankaŭ inercia referenca kadro aŭ inercia kadro) estas kadro de referenco kiu priskribas tempon homogene kaj spacon homogene, |izotrope, kaj en tempa sendependa maniero. Ĉi tiu permesas ke moviĝo kaj interagoj estas priskribita sen la ekzisto de .Ambaŭ, la kaj speciala teorio de relativecaj statas ke estas reale malfinie multaj ĉi tiaj kadroj, kaj la fizikaj leĝoj havas el ili la samajn formojn kiel ili havas en ĉiu alia inercia kadro de la sama dekstreco. En plataj spactempoj, ĉiuj inerciaj kadroj estas en stato de konstanta, uniforma moviĝo kun respekto unu al la alia. rdf:langString
Ein Bezugssystem in der Physik heißt Inertialsystem (von lateinisch inertia für „Trägheit“), wenn jeder kräftefreie Körper relativ zu diesem Bezugssystem in Ruhe verharrt oder sich gleichförmig (geradlinig und unbeschleunigt) bewegt. Kräftefrei bedeutet, dass der Körper keine Kräfte von anderen Objekten erfährt oder diese sich insgesamt aufheben, sodass die resultierende Kraft Null ist. Ein dreidimensionaler Raum, für den ein (streng oder angenähert gültiges) Inertialsystem reproduzierbar als Bezugssystem genutzt werden kann, wird in manchen Fachgebieten als Inertialraum bezeichnet. rdf:langString
In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. It is a frame in which an isolated physical object — an object with zero net force acting on it — is perceived to move with a constant velocity (it might be a zero velocity) or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration. rdf:langString
En mecánica newtoniana, un sistema de referencia inercial es un sistema de referencia en el que las leyes del movimiento cumplen las leyes de Newton y, por tanto, la variación del momento lineal del sistema es igual a las fuerzas reales sobre el sistema, es decir, un sistema en el que: . En cambio, la descripción newtoniana de un sistema no inercial requiere la introducción de fuerzas ficticias o inerciales, de tal manera que: . rdf:langString
Fisikan, erreferentzia-sistema inertzial deritzo erreferentzia-sistema berezi bati, zeinean inertziaren printzipioa betetzen den. Horrek esan nahi du inolako indarren eraginik jasaten ez duen gorputz puntualak translaziozko higidura zuzen uniformea daukala edo, bestela, geldi dagoela. Beraz, gorputzaren abiadura konstantea da, bai moduluz eta bai norabidez ere. Horrelako sistemei Galileoren sistemak edo sistema galilearrak ere esaten zaie Galileoren omenez, bera izan zen horretaz jabetu zen lehena. rdf:langString
En physique, un référentiel galiléen (nommé ainsi en hommage à Galilée), ou inertiel, se définit comme un référentiel dans lequel le principe d'inertie (Première loi de Newton) est vérifié, c'est-à-dire que tout corps ponctuel libre (i. e. sur lequel ne s’exerce aucune force ou sur lequel la résultante des forces est nulle) est en mouvement de translation rectiligne uniforme, ou au repos (qui est un cas particulier de mouvement rectiligne uniforme). Par suite, la vitesse du corps est constante (au cours du temps) en direction et en norme. rdf:langString
In fisica un sistema di riferimento inerziale è un sistema di riferimento in cui è valido il primo principio della dinamica. Con un'accettabile approssimazione è considerato inerziale il sistema solidale con il Sole e le stelle (il cosiddetto sistema delle stelle fisse), ed ogni altro sistema che si muova di moto rettilineo uniforme rispetto ad esso (e che quindi né acceleri né ruoti): in questo modo si viene a definire una classe di equivalenza per questi sistemi. rdf:langString
Układ inercjalny (inaczej inercyjny, z łac. inertia „bezwładność”) – układ odniesienia, w którym każde ciało, niepodlegające zewnętrznemu oddziaływaniu z innymi ciałami, porusza się bez przyspieszenia (tzn. ruchem jednostajnym prostoliniowym) lub pozostaje w spoczynku. Istnienie takiego układu jest postulowane przez pierwszą zasadę dynamiki Newtona. Inercjalny układ odniesienia można również zdefiniować jako taki układ, w którym nie pojawiają się pozorne siły bezwładności. rdf:langString
In de natuurkunde is een inertiaalstelsel (Latijn: inert, werkeloos, inactief, traag) een coördinatenstelsel waarin voorwerpen waarop geen kracht werkt, stilstaan of zich eenparig rechtlijnig voortbewegen. Een dergelijke beweging heet een traagheidsbeweging. Dit betekent dat in zo'n stelsel de bewegingswetten van Newton hun eenvoudigste vorm hebben: voorwerpen veranderen alleen van snelheid als er een kracht op ze inwerkt, en dan is de versnelling evenredig met die kracht. rdf:langString
De acordo com o primeiro postulado da relatividade restrita: Princípio da relatividade especial: Se um sistema de coordenadas K é escolhido de tal forma que, em relação a ele, as leis da física se apresentam com a forma mais simples, as mesmas leis são válidas em relação a qualquer outro sistema de coordenadas K' se movendo em translação uniforme em relação a K. – Albert Einstein: Fundamentos da teoria da relatividade geral rdf:langString
Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой все свободные тела движутся прямолинейно и равномерно либо покоятся. Существование систем, обладающих указанным свойством, постулируется первым законом Ньютона. Эквивалентное определение, удобное для использования в теоретической механике, звучит: «Инерциальной называется система отсчёта, по отношению к которой пространство является однородным и изотропным, а время — однородным». Экспериментальные факты свидетельствует о наличии систем с убедительной точностью близких к ИСО. rdf:langString
Інерці́йна систе́ма ві́дліку — система відліку, в якій тіло, на яке не діють жодні сили (або сили, що діють на нього компенсують одна одну, тобто рівнодійна дорівнює нулю), рухається рівномірно й прямолінійно, або це система відліку, в якій прискорення тіла зумовлене тільки дією на нього сил. Існування інерційних систем відліку постулюється в сучасному формулюванні законів Ньютона. Система відліку, яка рухається зі сталою швидкістю відносно інерційної системи, також є інерційною. Спеціальна теорія відносності постулює, що всі фізичні закони однакові для усіх інерційних систем відліку. rdf:langString
rdf:langString إطار مرجعي قصوري
rdf:langString Sistema de referència inercial
rdf:langString Inerciální vztažná soustava
rdf:langString Inertialsystem
rdf:langString Αδρανειακό σύστημα αναφοράς
rdf:langString Inercia kadro de referenco
rdf:langString Sistema de referencia inercial
rdf:langString Erreferentzia-sistema inertzial
rdf:langString Kerangka acuan inersia
rdf:langString Inertial frame of reference
rdf:langString Sistema di riferimento inerziale
rdf:langString Référentiel galiléen
rdf:langString 관성 좌표계
rdf:langString 慣性系
rdf:langString Układ inercjalny
rdf:langString Inertiaalstelsel
rdf:langString Referencial inercial
rdf:langString Inertialsystem
rdf:langString Инерциальная система отсчёта
rdf:langString Інерційна система відліку
rdf:langString 惯性参考系
xsd:integer 14838
xsd:integer 1123084557
rdf:langString InternetArchiveBot
rdf:langString February 2020
rdf:langString yes
rdf:langString D'acord amb la mecànica de Newton, un sistema inercial és un sistema no sotmès a cap força exterior i que, per tant, es desplaça a velocitat constant. Aquests sistemes són els únics que compleixen les tres lleis de Newton. En cas contrari, es diu que és un sistema de referència no inercial. Donat un sistema de referència inercial, un segon sistema de referència serà no inercial quan descrigui un moviment accelerat respecte al primer. L'acceleració del sistema no inercial pot ser deguda a: * Un canvi en el mòdul de la seva velocitat de translació (acceleració lineal). * Un canvi en la direcció de la seva velocitat de translació (per exemple, en un moviment de gir al voltant d'un sistema de referència inercial). * Un moviment de rotació sobre si mateix (vegeu la figura 1). * Una combinació d'alguns dels canvis anteriors.
rdf:langString إطار مرجعي عطالي أو نظام مرجعي قصوري أو إطار إسناد قصوري هو عبارة عن نظام إحداثيات يعرّف بكونه ذو حركة عطالية (أي مختبر فيزيائي ساكن أو يتحرك حركة منتظمة وفي خط مستقيم بالنسبة لنا، ويسود فيه القصور الذاتي) . وهذا ما يميزه عن الإطار المرجعي اللاعطالي (المختبر)الذي يتحرك حركة متسارعة، أو في حركة دائرية). في الفيزياء، يعتبر الجسم يتحرك حركة عطالية (تحت تأثير عزم القصور الذاتي فقط) : إذا لم تكن هناك أي قوة خارجية مؤثرة عليه، وهذا ما يعرف بقانون نيوتن الأول للحركة. عندما نعمم هذه الحركة العطالية للجسم على منطقة من الفضاء لتشمل جميع الأجسام الموجودة في تلك منطقة ما ونعرف تلك المنطقة كنظام إحداثي، عندئذ ندعو هذا النظام الإحداثي : إطار مرجعي عطالي.
rdf:langString Jako inerciální vztažná soustava se ve fyzice označuje taková vztažná soustava, v níž platí 1. Newtonův pohybový zákon, tj. těleso, na které nepůsobí žádná síla nebo výslednice sil je nulová, je v klidu nebo se pohybuje rovnoměrně přímočaře. Platí zde zákon setrvačnosti a každá vztažná soustava, je-li vzhledem k dané inerciální soustavě v klidu nebo pohybu rovnoměrném přímočarém, je rovněž inerciální. Jako příklad můžeme uvést stěny vagonu, který se pohybuje po přímé trati stálou rychlostí. Soustavy, v nichž neplatí 1. Newtonův pohybový zákon, se nazývají neinerciální vztažné soustavy.
rdf:langString Ein Bezugssystem in der Physik heißt Inertialsystem (von lateinisch inertia für „Trägheit“), wenn jeder kräftefreie Körper relativ zu diesem Bezugssystem in Ruhe verharrt oder sich gleichförmig (geradlinig und unbeschleunigt) bewegt. Kräftefrei bedeutet, dass der Körper keine Kräfte von anderen Objekten erfährt oder diese sich insgesamt aufheben, sodass die resultierende Kraft Null ist. Falls sich ein Körper, obwohl er in diesem Sinn kräftefrei ist, relativ zu einem bestimmten Bezugssystem beschleunigt oder krummlinig bewegt, so werden die auftretenden Beschleunigungen mit Trägheitskräften erklärt. Diese rühren daher, dass das Bezugssystem gegenüber einem Inertialsystem in Rotation oder anderweitig beschleunigter Bewegung ist. Trägheitskräfte gehen nicht von anderen Körpern aus und werden bei der Beurteilung der Kräftefreiheit nicht mitgezählt. In einem Inertialsystem gibt es keine Trägheitskräfte. Zum Beispiel ist wegen der Erdrotation ein mit der Erdoberfläche verbundenes Bezugssystem kein Inertialsystem. Die durch die Rotation verursachten Trägheitskräfte sind allerdings meist nicht zu bemerken, weshalb ein solches System praktisch in sehr guter Näherung als Inertialsystem zu betrachten ist. In einem wirklichen Inertialsystem würde sich der Fixstern­himmel nicht drehen. Ein dreidimensionaler Raum, für den ein (streng oder angenähert gültiges) Inertialsystem reproduzierbar als Bezugssystem genutzt werden kann, wird in manchen Fachgebieten als Inertialraum bezeichnet. In den modernen Werken zur Theoretischen Mechanik wird das Inertialsystem oft allein mithilfe des Trägheitssatzes definiert, der dem ersten der drei Newtonschen Axiome entspricht. Für eine vollständige Definition sind aber alle drei Newtonschen Axiome erforderlich: Das erste nennt die geradlinig-gleichförmige Bewegung von kräftefreien Körpern als wesentliche Eigenschaft eines Inertialsystems. Das zweite definiert allgemein die Kräfte durch die von ihnen verursachten Beschleunigungen. Das dritte schließlich verlangt, dass es zu jeder Kraft eine Gegenkraft geben muss, sodass hier ausschließlich Kräfte gemeint sind, die auf Wechselwirkungen zwischen Körpern zurückgehen, was auf Trägheitskräfte gerade nicht zutrifft. Der Begriff „Inertialsystem“ wurde erstmals 1885 von Ludwig Lange herausgearbeitet, der (nach Ernst Mach) den dabei benötigten Begriff des kräftefreien Körpers so präzisierte: Der kräftefreie Körper kann als von anderer Materie „unendlich“ weit entfernt gedacht werden. Gleichbedeutend sei (nach James Maxwell), den Trägheitssatz negativ auszudrücken: Immer, wenn ein in einem Inertialsystem beobachteter Körper sich nicht geradlinig-gleichförmig bewegt, ist das von Kräften verursacht, die von anderen Körpern ausgehen.(S. 271)
rdf:langString Ένα αδρανειακό σύστημα αναφοράς είναι ένα σύστημα στο οποίο ισχύουν ο πρώτος και δεύτερος νόμος του Νεύτωνα για την κίνηση των σωμάτων. Ως εκ τούτου, σε ένα αδρανειακό σύστημα αναφοράς, ένα σώμα επιταχύνεται μόνο όταν μια δύναμη εφαρμόζεται πάνω του, και (σύμφωνα με τον πρώτο νόμο του Νεύτωνα για την κίνηση των σωμάτων), αν δεν εφαρμόζεται πάνω του καμία δύναμη, ένα σώμα που έχει μηδενική ταχύτητα θα συνεχίσει να ηρεμεί και ένα σώμα που κινείται θα συνεχίσει να κινείται με σταθερή ταχύτητα και ευθύγραμμα.
rdf:langString En fiziko, inercia kadro de referenco (ankaŭ inercia referenca kadro aŭ inercia kadro) estas kadro de referenco kiu priskribas tempon homogene kaj spacon homogene, |izotrope, kaj en tempa sendependa maniero. Ĉi tiu permesas ke moviĝo kaj interagoj estas priskribita sen la ekzisto de .Ambaŭ, la kaj speciala teorio de relativecaj statas ke estas reale malfinie multaj ĉi tiaj kadroj, kaj la fizikaj leĝoj havas el ili la samajn formojn kiel ili havas en ĉiu alia inercia kadro de la sama dekstreco. En plataj spactempoj, ĉiuj inerciaj kadroj estas en stato de konstanta, uniforma moviĝo kun respekto unu al la alia. Per kontrasto, en ne-inercia referenca kadro, la leĝoj de fiziko dependas de la aparta kadro de referenco, kaj la kutimaj fizikaj fortoj devas esti ĝisplenigitaj per tio kio estas nomata kiel fikciaj fortoj. Ĉiuj ne-inerciaj kadroj estas akcelantaj kun respekto al ĉiuj inerciaj kadroj. En inercia kadro, neŭtona dua leĝo por havas la formon: F = ma kun F la suma forto (vektoro), m la maso de partiklo kaj a la akcelo de la partiklo (ankaŭ vektoro) kiu devus esti mezurita per rigardanto ripozanta en la kadro. La forto F estas la de ĉiuj realaj fortoj sur la partiklo, kiel elektromagneta, gravita, nuklea kaj tiel plu. En kontrasto, neŭtona dua leĝo en , turnanta je angula kurzo Ω ĉirkaŭ akso, prenas la formon: F' = ma kiu aspektas same kiel en inercia kadro, sed nun la forto F' estas la rezulta de ne nur F, sed ankaŭ de aldona ero kie la angula turnado de la kadro estas esprimita per la vektoro Ω direkte laŭ la rotacia akso, kaj kun grandeco egala al la angula kurzo de turnado Ω; simbolo × estas por la vektora produto;vektoro xB lokigas la korpon;vektoro vB estas la vektora rapido de korpo laŭ turnanta rigardanto (malsama de la rapido vidata de la inercia rigardanto). La superfluaj termoj en la forto F' estas la fikciaj fortoj por ĉi tiu kadro. La unua superflua termo estas la forto de Coriolis, la dua estas la decentrokura forto, kaj la tria la . Ĉi ĉiuj termoj havas ĉi tiujn propraĵojn: ili nuliĝas se Ω=0; tio estas, ili estas nulaj por inercia kadro (kiu, kompreneble, ne turniĝas); ili povas havi malsamajn grandecojn kaj direktojn por malsamaj turnantaj kadroj, dependante de ĝia aparta valoro de Ω; ili estas ĉieestaj en la turnanta kadro (influas ĉiun partiklon, sendistinge de cirkonstanco); kaj ili ne havas montreblan fonton en identigeblaj fizikaj fontoj, aparte en materio. Ankaŭ, fikciaj fortoj ne malpligrandiĝas kun distanco (malsimile, ekzemple, al nukleaj fortoj aŭ elektraj fortoj); ekzemple, la decentrokura forto pligrandiĝas kun distanco de la akso. Ĉiuj rigardantoj konsentas pri la reala forto, F; nur ne-inerciaj rigardantoj bezonas fikcian forton. La leĝoj de fiziko en la inercia kadro estas iusence pli simplaj ĉar la fortoj por konsidero estas pli malmultaj je sia kvanto. Neinerciaj kadroj povas esti evititaj. Kompreneble, mezuroj kun respekto al ne-inercia referenca kadro povas esti konvertitaj al inercia kadro, adiciante senpere la akcelon de la ne-inercia kadro kun akcelo vidata de la inercia kadro. Ĉi tiu maniero evitas uzon de fikciaj fortoj, sed ĝi povas esti malpli oportuna de intuicia, observa, kaj eĉ, ebena, para) komputa vidpunkto. Ekzemple, oni kalkulu la movadon de aero de la tera atmosfero kaj akvo de la teraj oceanoj. Oni bezonas la rezultojn relative al la turnanta kadro ligita kun la tero, tiel estas pli bone kalkuli en ĉi tiu koordinatsistemo. La alia varianto estas uzo de pli inercia kadro, kies fonto estas ligita kun iu centro de la turnado de tero (la pli fajnan neinerciecon, ekzemple pro turnado ĉirkaŭ centro de la Lakta vojo, tamen necesos neglekti). Sed tiam la rezultaj rapidoj de aero kaj akvo estos tre grandaj, preskaŭ same grandaj kiel rapidoj de eroj de solida surfaco de la tero en la samaj situoj, kaj ilia diferenco estos la signifa rezulto. Ŝanĝo de speco de koordinatsistemo, ekzemple de kartezia al polusa, ne influas la aspekto de fikciaj fortoj, malgraŭ tio ke la matematika formo de la leĝoj de moviĝo varias de unu speco de koordinatsistemo al la alia.
rdf:langString Fisikan, erreferentzia-sistema inertzial deritzo erreferentzia-sistema berezi bati, zeinean inertziaren printzipioa betetzen den. Horrek esan nahi du inolako indarren eraginik jasaten ez duen gorputz puntualak translaziozko higidura zuzen uniformea daukala edo, bestela, geldi dagoela. Beraz, gorputzaren abiadura konstantea da, bai moduluz eta bai norabidez ere. Horrelako sistemei Galileoren sistemak edo sistema galilearrak ere esaten zaie Galileoren omenez, bera izan zen horretaz jabetu zen lehena. Erreferentzia-sistema inertzialetan, denbora uniformea da eta espazioa homogeneoa eta isotropoa. Mekanika newtondarrean, hiru dimentsioko espazio euklidear osoa kontuan hartzen du sistema horrek, eta toki guztietan dagoen behatzaile omnipresente bat kontsideratzen da bertan, edozein aldiunetan puntu materialak duen posizioa neurtzeko gai dena; izan ere, gertaera puntuala zein aldiunetan gertatzen den neurtuko du kronometroaz, eta puntua zein posiziotan dagoen luzera-neurgailuaz. Dena den, praktikan erabiltzen diren sistema inertzialak idealizazio bat dira, beti ere hurbilketa modura definitzen dena. Erreferentzia-sistema inertzial batekiko biraketarik gabe eta translazio zuzen eta uniformez higitzen den beste edozein sistema ere inertziala da. Horrek esan nahi du infinitu sistema galilear daudela. Mekanikaren legeak berberak dira sistema inertzial guztietan; bestela esanda, ez dira aldatzen sistema inertzial batetik beste sistema inertzial batera pasatzean. Hala ere, magnitude fisikoen balioak desberdinak izan daitezke sistema desberdinetan, nahiz eta balio horiek elkarrekin erlazionaturik dauden, transformazio-ekuazio zehatzen bitartez. Mekanika newtondarrean, sistema batetik besterako formulak Galileoren transformazioaren bidez egiten dira. Sistema inertzial guztietatik balio bereko azelerazioak neurtzen dira; horrexegatik, sistema inertzial guztietan modu berean aplikatzen dira Newtonen legeak. Bestela esanda, guztietatik behatzen eta neurtzen dira indar berberak; indar horiek “errealak” direla esaten dira. Erlatibitate berezian, sistema batetik bestera pasatzeko, ezin da Galileoren transformazioa erabili; horren ordez, Lorentzen transformazioa erabili behar da. Inertziaren printzipioa betetzen ez duten sistemei erreferentzia-sistema ez-inertzial deritze. Horrelakoak dira sistema inertzial batekiko biraketaz edo azelerazioaz higitzen diren erreferentzia-sistemak. Sistema horietan Newtonen legeak ondo aplikatzeko, indar errealez gain, inertzia-indarrak ere hartu behar dira kontuan. Inertzia-indarrak ez dira gorputz materialen arteko interakzioen ondoriozkoak, eta horregatik indar “fiktizioak” izena ere ematen zaie.
rdf:langString In classical physics and special relativity, an inertial frame of reference (also called inertial reference frame, inertial frame, inertial space, or Galilean reference frame) is a frame of reference that is not undergoing any acceleration. It is a frame in which an isolated physical object — an object with zero net force acting on it — is perceived to move with a constant velocity (it might be a zero velocity) or, equivalently, it is a frame of reference in which Newton's first law of motion holds. All inertial frames are in a state of constant, rectilinear motion with respect to one another; in other words, an accelerometer moving with any of them would detect zero acceleration. It has been observed that celestial objects which are far away from other objects and which are in uniform motion with respect to the cosmic microwave background radiation maintain such uniform motion. Measurements in one inertial frame can be converted to measurements in another by a simple transformation, the Galilean transformation in Newtonian physics and the Lorentz transformation in special relativity. In analytical mechanics, an inertial frame of reference can be defined as a frame of reference that describes time and space homogeneously, isotropically, and in a time-independent manner. In general relativity * in any region small enough for the curvature of spacetime and tidal forces to be negligible, one can find a set of inertial frames that approximately describe that region. * the physics of a system can be described in terms of an inertial frame without causes external to the respective system, with the exception of an apparent effect due to so-called distant masses. In a non-inertial reference frame, viewed from a classical physics and special relativity perspective, the interactions between the fundamental constituents of the observable universe (the physics of a system) vary depending on the acceleration of that frame with respect to an inertial frame. Viewed from this perspective and due to the phenomenon of inertia the 'usual' physical forces between two bodies have to be supplemented by apparently sourceless inertial forces. Viewed from a general relativity theory perspective appearing inertial forces (the supplementary external causes) are attributed to geodesic motion in spacetime. In classical physics, for example, a ball dropped towards the ground does not move exactly straight down because the Earth is rotating. This means the frame of reference of an observer on Earth is not inertial. As a consequence the science of physics has to take into account the Coriolis effect—an apparent force— to predict the respective small horizontal motion. Another example of an apparent force appearing in rotating reference frames concerns the centrifugal effect, the centrifugal force.
rdf:langString En mecánica newtoniana, un sistema de referencia inercial es un sistema de referencia en el que las leyes del movimiento cumplen las leyes de Newton y, por tanto, la variación del momento lineal del sistema es igual a las fuerzas reales sobre el sistema, es decir, un sistema en el que: . En cambio, la descripción newtoniana de un sistema no inercial requiere la introducción de fuerzas ficticias o inerciales, de tal manera que: . Esto lleva a una definición alternativa, un sistema inercial es aquel en que el movimiento de las partículas puede describirse empleando solo fuerzas reales sin necesidad de considerar fuerzas ficticias. El concepto de sistema de referencia inercial también es aplicable a teorías más generales que la mecánica newtoniana. Así, en la teoría de la relatividad especial también se pueden introducir los sistemas inerciales. Aunque en relatividad especial la caracterización matemática no coincide con la que se da en mecánica newtoniana, debido a que la segunda ley de Newton, tal como la formuló, no se cumple en la Teoría de la relatividad. El concepto de sistema de referencia no fue establecido hasta dos siglos después de la formulación de las leyes de Newton (1687), cuando Ludwig Lange (1885) introdujo el concepto en un intento de eliminar la necesidad de un espacio y un tiempo absolutos del tipo que Newton conjeturaba. Estas ideas fueron, poco más tarde, consideradas en la formulación de la teoría de la relatividad especial.
rdf:langString En physique, un référentiel galiléen (nommé ainsi en hommage à Galilée), ou inertiel, se définit comme un référentiel dans lequel le principe d'inertie (Première loi de Newton) est vérifié, c'est-à-dire que tout corps ponctuel libre (i. e. sur lequel ne s’exerce aucune force ou sur lequel la résultante des forces est nulle) est en mouvement de translation rectiligne uniforme, ou au repos (qui est un cas particulier de mouvement rectiligne uniforme). Par suite, la vitesse du corps est constante (au cours du temps) en direction et en norme. Une définition, plus abstraite, mais équivalente, est celle d'un référentiel par rapport auquel le temps est uniforme, l'espace homogène et isotrope. Il s'agit en pratique d'une idéalisation, la recherche d'un référentiel inertiel étant un sujet délicat, et sa détermination concrète toujours approximative. Tout référentiel en mouvement de translation rectiligne et uniforme par rapport à un référentiel galiléen est lui-même galiléen : il existe donc une infinité de référentiels galiléens, les formules de passage de l'un à l'autre se faisant par transformation de Galilée, qui laisse inchangée la forme des lois du mouvement de Newton. En mécanique relativiste, le passage d'un référentiel galiléen à l'autre fait intervenir la transformation de Lorentz, qui se ramène à celle de Galilée pour des vitesses faibles devant celle de la lumière dans le vide. Les lois de la mécanique sont invariantes par changement de référentiel galiléen : ce postulat constitue le principe de la relativité galiléenne, qui toutefois n'est pas valable pour l'électrodynamique classique. En effet, les formules de passage d'un référentiel galiléen à un autre prévoient une dépendance de la vitesse de la lumière dans le vide c selon le référentiel par composition des vitesses, ce qui n'est pas observé. La prise en compte de cette invariance de c par changement de référentiel galiléen est à la base de la théorie de la relativité restreinte. Dans un référentiel non inertiel, qui est animé d’un mouvement accéléré par rapport à un référentiel galiléen, il faut faire intervenir les forces d’inertie. Ces forces se distinguent de celles prises en compte dans un référentiel galiléen, car elles ne sont pas associées à une interaction entre le corps dont on étudie le mouvement et un autre corps.
rdf:langString Kerangka acuan inersia adalah salah satu jenis kerangka acuan yang digunakan sebagai titik acuan dalam pengamatan fisika. Persyaratan suatu titik acuan dapat disebut sebagai kerangka acuan inersia ialah tidak mengalami percepatan gerak. Pada kerangka acuan inersia, hukum gerak Newton khususnya hukum pertama Newton dapat diterapkan. Kerangka acuan inersia juga berlaku pada setiap kerangka acuan yang memiliki kecepatan konstan dengan gaya gerak yang relatif.
rdf:langString In de natuurkunde is een inertiaalstelsel (Latijn: inert, werkeloos, inactief, traag) een coördinatenstelsel waarin voorwerpen waarop geen kracht werkt, stilstaan of zich eenparig rechtlijnig voortbewegen. Een dergelijke beweging heet een traagheidsbeweging. Dit betekent dat in zo'n stelsel de bewegingswetten van Newton hun eenvoudigste vorm hebben: voorwerpen veranderen alleen van snelheid als er een kracht op ze inwerkt, en dan is de versnelling evenredig met die kracht. Hemellichamen die ver van andere objecten verwijderd zijn en die in uniforme beweging zijn ten opzichte van de kosmische achtergrondstraling, behouden een dergelijke uniforme beweging. De bijbehorende inertiaalstelsels worden 'traagheidsframes' genoemd, het zijn de frames waarin de eerste bewegingswet van Newton geldig is. Alle inertiaalstelsels zijn ten opzichte van elkaar in een eenparig rechtlijnige beweging. In geen daarvan zal een versnellingsmeter een versnelling aanwijzen. Metingen in het ene inertiaalstelsel kunnen met een eenvoudige transformatie omgerekend worden naar een ander inertiaalstelsel. Voor newtoniaanse mechanica is dat de galileitransformatie, voor de speciale relativiteitstheorie de lorentztransformatie. In de algemene relativiteitstheorie kan in elk gebiedje dat zo klein is dat de kromming van de tijdruimte verwaarloosbaar is, een stel inertiaalstelsels gevonden worden die dat gebied bij benadering beschrijven. Het aardoppervlak is geen inertiaalstelsel omdat onze planeet draait ten opzichte van de vaste sterren en sterrenstelsels. Voor veel bewegingen op grote schaal moet rekening gehouden worden met deze draaiing. Het kan berekeningen eenvoudiger maken om versnelde bewegingen toch te beschrijven in een inertiaalstelsel. Dan manifesteren er zich echter traagheidseffecten: een traagheids-schijnkracht bij versnelling van de omgeving en een traagheidsweerstand bij daadwerkelijke versnelling van het object ten opzichte van een traagheidsbeweging, die een beweging kan zijn langs een geodeet van de vierdimensionale ruimtetijd. Met zulke effecten wordt in dit geval rekening gehouden door ze als traagheidskrachten in de formules en in de berekening mee te nemen. Anders gezegd: er worden in het rekenmodel van het inertiaalstelsel daar in principe niet in thuis horende krachten ingevoerd, die om deze reden schijnkrachten zijn gaan heten, zoals het corioliseffect en de middelpuntvliedende kracht.
rdf:langString 관성좌표계(慣性座標系)는 고전 역학에서 뉴턴의 운동법칙 중 제1법칙이 성립하는 좌표계를 말한다. 즉, 관성 좌표계에서 아무런 힘도 작용하지 않는 물체는 정지해 있거나 등속 직선 운동을 한다. 따라서 일정한 속도를 갖는 모든 계(frame)가 관성 좌표계에 해당되며 모든 관성 좌표계에서 물리 법칙은 동일하게 적용할 수 있다. 만일 어떤 좌표계가 가속도를 가지고 있다면 그 좌표계 안의 물체는 아무런 힘이 작용하지 않을 때도 가속도를 갖게 되어 뉴턴의 1법칙에 어긋난다. 그러나 이것은 자연을 기술하는 수많은 형식들 중 뉴턴 역학이 선택되었기 때문이지 절대적인 것은 아니다. 만약 가속도를 갖는 좌표계를 기본 좌표계로 선택하였다면 물리 법칙은 다른 형태로 발전했을 것이며 힘의 정의도 달라졌을 것이다. 즉, 관성 좌표계는 자연계를 뉴턴 역학으로 기술하기 위한 가장 기본적인 장치이다. 또, 모든 관성 좌표계는 속도에 상관없이 갈릴레이 변환에 대하여 불변이라 정의하는데 이는 뉴턴 역학에서 절대공간과 절대시간이 전제가 됨을 의미한다.
rdf:langString In fisica un sistema di riferimento inerziale è un sistema di riferimento in cui è valido il primo principio della dinamica. Con un'accettabile approssimazione è considerato inerziale il sistema solidale con il Sole e le stelle (il cosiddetto sistema delle stelle fisse), ed ogni altro sistema che si muova di moto rettilineo uniforme rispetto ad esso (e che quindi né acceleri né ruoti): in questo modo si viene a definire una classe di equivalenza per questi sistemi. Storicamente, furono i fisici James Thomson, nel 1884, e Ludwig Lange, nel 1885, ad introdurre i termini sistema di riferimento inerziale e orologio di riferimento (rispettivamente scala temporale inerziale). La presentazione di Lange fu quella più citata nella letteratura di lingua tedesca e fu menzionata con particolare enfasi dal fisico e filosofo austriaco Ernst Mach nella seconda edizione (1889) del suo trattato Meccanica.
rdf:langString Układ inercjalny (inaczej inercyjny, z łac. inertia „bezwładność”) – układ odniesienia, w którym każde ciało, niepodlegające zewnętrznemu oddziaływaniu z innymi ciałami, porusza się bez przyspieszenia (tzn. ruchem jednostajnym prostoliniowym) lub pozostaje w spoczynku. Istnienie takiego układu jest postulowane przez pierwszą zasadę dynamiki Newtona. Inercjalny układ odniesienia można również zdefiniować jako taki układ, w którym nie pojawiają się pozorne siły bezwładności. Zgodnie z zasadą względności Galileusza wszystkie inercjalne układy odniesienia są równouprawnione i wszystkie prawa mechaniki i fizyki są w nich identyczne. Układy inercjalne poruszają się względem siebie jednostajnie i prostoliniowo.
rdf:langString 慣性系(かんせいけい、ガリレイ系とも、英語: inertial frame of reference)は、慣性の法則(運動の第1法則)が成立する座標系である。物理学全般に関係する概念であるが、ニュートン力学および特殊相対性理論において特によく注目される。 力がはたらかないか、はたらいている力の和(合力)が 0 である物体がする運動を慣性運動といい、慣性系とは慣性運動をする物体と、それと共に運動する時計と物差しで測る時間・空間とをひとまとめにした概念である。慣性の法則により慣性運動は等速直線運動であるため、慣性系は直線座標系となる。したがって慣性系によって物体の運動状態を記述するとき、その物体は外力を受けない限り等速直線運動を行う。 ある慣性系 S1 に対して等速直線運動する座標系 S2 から見ると物体は外力を受けない限り等速直線運動を行うので、S2 は慣性系である。また、 S1 に対して減速している車に固定した座標系 S3 においては物体は外力を受けていなくても前向きの加速運動を行い、慣性の法則が成立しないので S3 は慣性系ではない。
rdf:langString De acordo com o primeiro postulado da relatividade restrita: Princípio da relatividade especial: Se um sistema de coordenadas K é escolhido de tal forma que, em relação a ele, as leis da física se apresentam com a forma mais simples, as mesmas leis são válidas em relação a qualquer outro sistema de coordenadas K' se movendo em translação uniforme em relação a K. – Albert Einstein: Fundamentos da teoria da relatividade geral Este postulado define um referencial inercial (ou referencial galileano). De acordo com este princípio, referenciais inerciais são identificados pela propriedade de que compartilham as mesmas e mais simples Leis da Física. Em termos práticos, esta equivalência de referenciais inerciais significa que não existe nenhum experimento que cientistas dentro de uma caixa movendo-se uniformemente possam fazer para descobrir sua velocidade absoluta (de outra maneira seria possível determinar um sistema de referência absoluto). Na mecânica clássica e na teoria da relatividade restrita, um sistema inercial pode ser identificado como aquele em que os símbolos de Christoffel, obtidos a partir da função lagrangeana, se anulam.
rdf:langString Ett inertialsystem eller en inertialram är koordinatsystem där Newtons första lag, tröghetslagen, gäller. Det betyder att krafter och accelerationer som eventuellt uppträder i beräkningar måste behandlas för sig. Alla inertialsystem är ekvivalenta och mekanikens lagar gäller i samtliga. Begreppet inertialsystem användes första gången av Ludwig Lange 1885.
rdf:langString Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой все свободные тела движутся прямолинейно и равномерно либо покоятся. Существование систем, обладающих указанным свойством, постулируется первым законом Ньютона. Эквивалентное определение, удобное для использования в теоретической механике, звучит: «Инерциальной называется система отсчёта, по отношению к которой пространство является однородным и изотропным, а время — однородным». Экспериментальные факты свидетельствует о наличии систем с убедительной точностью близких к ИСО. Второй и третий законы Ньютона, а также остальные аксиомы динамики в классической механике формулируются по отношению к инерциальным системам отсчёта. В соответствии с сильным принципом эквивалентности сил гравитации и инертности к инерциальным системам отсчёта также относятся надлежащим образом выбранные локально-инерциальные системы координат. Термин «инерциальная система» (нем. Inertialsystem) был предложен в 1885 году Людвигом Ланге и означал систему координат, в которой справедливы законы Ньютона. По замыслу Ланге, этот термин должен был заменить понятие абсолютного пространства, подвергнутого в этот период уничтожающей критике. С появлением теории относительности понятие было обобщено до «инерциальной системы отсчёта».
rdf:langString 在经典物理学与狭义相对论中,惯性参考系或惯性坐标系,简称为惯性系(英語:Inertial frame of reference)是指可以均匀且各向同性地描述空间,并且可以均匀描述时间的参考系。在惯性参考系内,系统内部的物理规律与系统外的因素无关。 所有的惯性系之间都在进行匀速平移运动。不同惯性系的测量结果可以通过简单的变换(伽利略变换或洛伦兹变换)相互转化。广义相对论中,在任意足够小以致时空曲率与潮汐力可以忽略的区域内,人们可以找到一组惯性系来近似描述这个区域。广义相对论中,非惯性系中的系统由于测地线运动原理不会受到外界影响。 物理定律在所有惯性系中形式一致。经典物理学与狭义相对论中,在非惯性系里,系统的物理规律会受到参考系相对于惯性系的加速度影响而发生变化。此时物体的受力要考虑惯性力。比如,落地的小球由于地球自转并不是完全沿直线落下。与地球一起运动的观察者必须考虑科里奥利力才能预测小球的水平运动情况。离心力是另一种与旋转参考系有关的惯性力。
rdf:langString Інерці́йна систе́ма ві́дліку — система відліку, в якій тіло, на яке не діють жодні сили (або сили, що діють на нього компенсують одна одну, тобто рівнодійна дорівнює нулю), рухається рівномірно й прямолінійно, або це система відліку, в якій прискорення тіла зумовлене тільки дією на нього сил. Існування інерційних систем відліку постулюється в сучасному формулюванні законів Ньютона. Система відліку, яка рухається зі сталою швидкістю відносно інерційної системи, також є інерційною. Інерційність будь-якої реальної системи відліку приблизна. Будь-яка точка, що її можна було б вибрати за початок системи координат, здійснює якийсь нерівномірний рух. Так, наприклад, для більшості задач у земних умовах можна зв'язати інерційну систему відліку з поверхнею Землі, нехтуючи обертанням планети навколо своєї осі чи навколо Сонця, проте, при розгляді сил Коріоліса таку систему відліку вважати інерційною не можна. Аналогічно, при розв'язуванні задач планетарного руху, можна знехтувати обертанням Сонця навколо центру галактики. Спеціальна теорія відносності постулює, що всі фізичні закони однакові для усіх інерційних систем відліку. При переході від однієї інерційної системи відліку до іншої справедливі перетворення Лоренца. Системи відліку, зв'язані з тілами, що рухаються нерівномірно чи непрямолінійно, називаються неінерційними системами відліку.
xsd:nonNegativeInteger 67792

data from the linked data cloud