Incidence structure
http://dbpedia.org/resource/Incidence_structure an entity of type: WikicatSetFamilies
Inzidenzstruktur bezeichnet in der Mathematik, insbesondere der Geometrie, eine Struktur, die durch eine Menge von Punkten und eine dazu disjunkte Menge von Blöcken sowie eine zwischen diesen Mengen festgelegte Inzidenzrelation gegeben ist. Die Inzidenzrelation gibt aus der Menge aller möglichen Paare von Punkten und Blöcken nur jene an, die eine Inzidenz eines Punktes mit einem Block (z. B. einer Linie) bezeichnen. Durch die allgemein gehaltene Formulierung lassen sich zahlreiche Strukturen als Spezialfälle einer Inzidenzstruktur beschreiben.
rdf:langString
기하학에서 결합 구조(結合構造, 영어: incidence structure)는 두 집합 및 그 사이의 어떤 이항 관계로 구성된 수학적 구조이다. 일부 경우, 이는 각각 점과 직선으로 이루어진 기하계로 해석될 수 있다.
rdf:langString
In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore all the properties of this geometry except for the relation of which points are on which lines for all points and lines. What is left is the incidence structure of the Euclidean plane.
rdf:langString
En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice. Cette réduction de la complexité est à l'origine de l'émergence du concept dans d'autres domaines sous des formes propres.
rdf:langString
Структура инцидентности — в математике тройка где P — это множество «точек», L — множество «линий», а — отношение инцидентности. Элементы называются флагами. Если, мы говорим, что точка p «лежит на» линии . Можно представить L как множество подмножеств P, и инцидентностью I будет включение ( в том и только в том случае, когда ), но можно думать более абстрактно.
rdf:langString
У математиці структурою інцидентності називається трійка де P — це множина «точок», L — множина «ліній», а — відношення інцидентності. Елементи називаються прапорами. Якщо , ми кажемо, що точка p «лежить на» лінії . Можна уявити L як множину підмножин P, і інцидентністю I буде включення ( тоді і тільки тоді, коли ), але можна думати більш абстрактно.
rdf:langString
rdf:langString
Inzidenzstruktur
rdf:langString
Structure d'incidence
rdf:langString
Incidence structure
rdf:langString
결합 구조
rdf:langString
Структура инцидентности
rdf:langString
Структура інцидентності
xsd:integer
723125
xsd:integer
1109180737
xsd:double
1.5
rdf:langString
.
rdf:langString
Inzidenzstruktur bezeichnet in der Mathematik, insbesondere der Geometrie, eine Struktur, die durch eine Menge von Punkten und eine dazu disjunkte Menge von Blöcken sowie eine zwischen diesen Mengen festgelegte Inzidenzrelation gegeben ist. Die Inzidenzrelation gibt aus der Menge aller möglichen Paare von Punkten und Blöcken nur jene an, die eine Inzidenz eines Punktes mit einem Block (z. B. einer Linie) bezeichnen. Durch die allgemein gehaltene Formulierung lassen sich zahlreiche Strukturen als Spezialfälle einer Inzidenzstruktur beschreiben.
rdf:langString
In mathematics, an incidence structure is an abstract system consisting of two types of objects and a single relationship between these types of objects. Consider the points and lines of the Euclidean plane as the two types of objects and ignore all the properties of this geometry except for the relation of which points are on which lines for all points and lines. What is left is the incidence structure of the Euclidean plane. Incidence structures are most often considered in the geometrical context where they are abstracted from, and hence generalize, planes (such as affine, projective, and Möbius planes), but the concept is very broad and not limited to geometric settings. Even in a geometric setting, incidence structures are not limited to just points and lines; higher-dimensional objects (planes, solids, n-spaces, conics, etc.) can be used. The study of finite structures is sometimes called finite geometry.
rdf:langString
En mathématiques, une structure d'incidence est toute composition de deux types d'objets dans le plan euclidien : des points ou l'équivalent de points et des droites ou l'équivalent de droites et d'une seule relation possible entre ces types, les autres propriétés étant ignorées et la structure pouvant ainsi se représenter par une matrice. Cette réduction de la complexité est à l'origine de l'émergence du concept dans d'autres domaines sous des formes propres. Les structures d'incidence sont le plus souvent considérées dans le contexte géométrique d'où elles sont abstraites, et donc généralisées, tels que les plans affines, projectifs ou de plan de Möbius, mais le concept est plus large et ne se limite pas aux propriétés géométriques. Même dans un environnement géométrique, les structures d'incidence ne se limitent pas aux seuls points et droites ; des objets de plus grande dimension (plans, solides, espaces de dimension n, coniques, etc.) peuvent être vus sous cet angle. L'étude des structures finies est parfois appelée la géométrie finie.
rdf:langString
기하학에서 결합 구조(結合構造, 영어: incidence structure)는 두 집합 및 그 사이의 어떤 이항 관계로 구성된 수학적 구조이다. 일부 경우, 이는 각각 점과 직선으로 이루어진 기하계로 해석될 수 있다.
rdf:langString
Структура инцидентности — в математике тройка где P — это множество «точек», L — множество «линий», а — отношение инцидентности. Элементы называются флагами. Если, мы говорим, что точка p «лежит на» линии . Можно представить L как множество подмножеств P, и инцидентностью I будет включение ( в том и только в том случае, когда ), но можно думать более абстрактно. Структуры инцидентности обобщают плоскости (такие как , проективные и плоскости Мёбиуса), как можно видеть из аксиоматических определений этих плоскостей. Структуры инцидентности также обобщают геометрические структуры более высокой размерности; при этом конечные структуры иногда называют конечными геометриями.
rdf:langString
У математиці структурою інцидентності називається трійка де P — це множина «точок», L — множина «ліній», а — відношення інцидентності. Елементи називаються прапорами. Якщо , ми кажемо, що точка p «лежить на» лінії . Можна уявити L як множину підмножин P, і інцидентністю I буде включення ( тоді і тільки тоді, коли ), але можна думати більш абстрактно. Структури інцидентності узагальнюють площини (такі як , проєктивні і площини Мебіуса), як можна бачити з аксіоматичних визначень цих площин. Структури інцидентності також узагальнюють геометричні структури вищої розмірності; при цьому скінченні структури іноді називають скінченними геометріями.
xsd:nonNegativeInteger
19749