Ihara zeta function

http://dbpedia.org/resource/Ihara_zeta_function an entity of type: Disease

En matemàtiques, la funció zeta d'Ihara és una funció zeta associada a un graf finit. S'assembla molt a la funció zeta de Selberg, i s'utilitza per relacionar els camins tancats amb l' de la matriu d'adjacència. La funció zeta d'Ihara va ser definida per primera vegada per en la dècada del 1960 en el context de subgrups discrets del grup lineal especial p-àdic de dos per dos. Jean-Pierre Serre va suggerir en el seu llibre Trees (Arbres) que la definició original d'Ihara es pot reinterpretar graf-teòricament. Va ser qui va posar en pràctica aquest suggeriment el 1985. Segons va observar Sunada, un graf regular és un graf de Ramanujan si i només si la seva funció zeta d' Ihara satisfà un anàleg de la hipòtesi de Riemann. rdf:langString
La función zeta de Ihara tiene similitudes con la función zeta de Selberg, y es utilizada para relacionar el espectro de la matriz de adyacencia de un gráfico a su característica de Euler. rdf:langString
In mathematics, the Ihara zeta function is a zeta function associated with a finite graph. It closely resembles the Selberg zeta function, and is used to relate closed walks to the spectrum of the adjacency matrix. The Ihara zeta function was first defined by Yasutaka Ihara in the 1960s in the context of discrete subgroups of the two-by-two p-adic special linear group. Jean-Pierre Serre suggested in his book Trees that Ihara's original definition can be reinterpreted graph-theoretically. It was Toshikazu Sunada who put this suggestion into practice in 1985. As observed by Sunada, a regular graph is a Ramanujan graph if and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis. rdf:langString
En mathématiques, la fonction zêta d'Ihara est une fonction zêta associée à un graphe fini. Elle ressemble étroitement à la fonction zêta de Selberg, et est utilisé pour relier les chemins fermés au spectre de la matrice d'adjacence. La fonction zêta d'Ihara a tout d'abord été défini par Yasutaka Ihara dans les années 1960 dans le contexte de sous-groupes discrets des groupes spéciaux linéaires deux-par-deux p-adique. Jean-Pierre Serre a suggéré dans son livre Arbres que la définition originale d'Ihara peut être réinterprété dans la théorie des graphes. C'est Toshikazu Sunada qui a réalisé cette suggestion, en 1985. Comme l'a observé Sunada, un graphe régulier est un graphe de Ramanujan si et seulement si sa fonction zêta d'Ihara satisfait un analogue de l'hypothèse de Riemann. rdf:langString
数論では、伊原のゼータ函数(Ihara zeta-function)は、有限グラフに付随するゼータ函数である。伊原のゼータ函数は、セルバーグのゼータ函数に非常に良く似ていて、閉じた径路を隣接行列のスペクトルに関係付けることに使われる。伊原のゼータ函数は、最初、1960年代に伊原康隆により、2 × 2 p-進特殊線型群の離散部分群(discrete subgroups)の脈絡の中で定義された。ジャン=ピエール・セール(Jean-Pierre Serre)は書籍 Trees の中で、伊原の元来の定義はグラフ理論的に解釈することができると示唆している。1985年、砂田利一は、この示唆を現実のものとした。砂田が述べたように、正則グラフがラマヌジャングラフ(Ramanujan graph)であることと、グラフの伊原のゼータ函数がラマヌジャン予想の類似を満たすこととは同値である。 rdf:langString
rdf:langString Funció zeta d'Ihara
rdf:langString Función zeta de Ihara
rdf:langString Fonction zêta d'Ihara
rdf:langString Ihara zeta function
rdf:langString 이하라 제타 함수
rdf:langString 伊原のゼータ函数
xsd:integer 1342362
xsd:integer 967898668
rdf:langString En matemàtiques, la funció zeta d'Ihara és una funció zeta associada a un graf finit. S'assembla molt a la funció zeta de Selberg, i s'utilitza per relacionar els camins tancats amb l' de la matriu d'adjacència. La funció zeta d'Ihara va ser definida per primera vegada per en la dècada del 1960 en el context de subgrups discrets del grup lineal especial p-àdic de dos per dos. Jean-Pierre Serre va suggerir en el seu llibre Trees (Arbres) que la definició original d'Ihara es pot reinterpretar graf-teòricament. Va ser qui va posar en pràctica aquest suggeriment el 1985. Segons va observar Sunada, un graf regular és un graf de Ramanujan si i només si la seva funció zeta d' Ihara satisfà un anàleg de la hipòtesi de Riemann.
rdf:langString La función zeta de Ihara tiene similitudes con la función zeta de Selberg, y es utilizada para relacionar el espectro de la matriz de adyacencia de un gráfico a su característica de Euler.
rdf:langString In mathematics, the Ihara zeta function is a zeta function associated with a finite graph. It closely resembles the Selberg zeta function, and is used to relate closed walks to the spectrum of the adjacency matrix. The Ihara zeta function was first defined by Yasutaka Ihara in the 1960s in the context of discrete subgroups of the two-by-two p-adic special linear group. Jean-Pierre Serre suggested in his book Trees that Ihara's original definition can be reinterpreted graph-theoretically. It was Toshikazu Sunada who put this suggestion into practice in 1985. As observed by Sunada, a regular graph is a Ramanujan graph if and only if its Ihara zeta function satisfies an analogue of the Riemann hypothesis.
rdf:langString En mathématiques, la fonction zêta d'Ihara est une fonction zêta associée à un graphe fini. Elle ressemble étroitement à la fonction zêta de Selberg, et est utilisé pour relier les chemins fermés au spectre de la matrice d'adjacence. La fonction zêta d'Ihara a tout d'abord été défini par Yasutaka Ihara dans les années 1960 dans le contexte de sous-groupes discrets des groupes spéciaux linéaires deux-par-deux p-adique. Jean-Pierre Serre a suggéré dans son livre Arbres que la définition originale d'Ihara peut être réinterprété dans la théorie des graphes. C'est Toshikazu Sunada qui a réalisé cette suggestion, en 1985. Comme l'a observé Sunada, un graphe régulier est un graphe de Ramanujan si et seulement si sa fonction zêta d'Ihara satisfait un analogue de l'hypothèse de Riemann.
rdf:langString 数論では、伊原のゼータ函数(Ihara zeta-function)は、有限グラフに付随するゼータ函数である。伊原のゼータ函数は、セルバーグのゼータ函数に非常に良く似ていて、閉じた径路を隣接行列のスペクトルに関係付けることに使われる。伊原のゼータ函数は、最初、1960年代に伊原康隆により、2 × 2 p-進特殊線型群の離散部分群(discrete subgroups)の脈絡の中で定義された。ジャン=ピエール・セール(Jean-Pierre Serre)は書籍 Trees の中で、伊原の元来の定義はグラフ理論的に解釈することができると示唆している。1985年、砂田利一は、この示唆を現実のものとした。砂田が述べたように、正則グラフがラマヌジャングラフ(Ramanujan graph)であることと、グラフの伊原のゼータ函数がラマヌジャン予想の類似を満たすこととは同値である。
xsd:nonNegativeInteger 5623

data from the linked data cloud