ITP method

http://dbpedia.org/resource/ITP_method

In numerical analysis, the ITP method, short for Interpolate Truncate and Project, is the first root-finding algorithm that achieves the superlinear convergence of the secant method while retaining the optimal worst-case performance of the bisection method. It is also the first method with guaranteed average performance strictly better than the bisection method under any continuous distribution. In practice it performs better than traditional interpolation and hybrid based strategies (Brent's Method, Ridders, Illinois), since it not only converges super-linearly over well behaved functions but also guarantees fast performance under ill-behaved functions where interpolations fail. rdf:langString
Em análise numérica, o método ITP, abreviação de Interpolar, Truncar e Projetar, é o primeiro algoritmo de busca de raízes a atingir a convergência superlinear do método secante garantindo o desempenho de pior caso do método de biseção. O método ITP segue a mesma estrutura das estratégias que mantém o controle dos limites superior e inferior para a localização da raiz; e, em adição, o método mantém o controle da região onde o desempenho do pior caso é mantido sob controle. Em cada iteração o método ITP consulta o valor da função em um ponto intermediário do intervalo e descarta a parte do intervalo entre dois pontos onde o valor da função compartilha o mesmo sinal . O método ITP também é o primeiro método com desempenho médio estritamente melhor do que o método de biseção sob qualquer dist rdf:langString
rdf:langString ITP method
rdf:langString Método ITP
xsd:integer 66104540
xsd:integer 1115183773
rdf:langString In numerical analysis, the ITP method, short for Interpolate Truncate and Project, is the first root-finding algorithm that achieves the superlinear convergence of the secant method while retaining the optimal worst-case performance of the bisection method. It is also the first method with guaranteed average performance strictly better than the bisection method under any continuous distribution. In practice it performs better than traditional interpolation and hybrid based strategies (Brent's Method, Ridders, Illinois), since it not only converges super-linearly over well behaved functions but also guarantees fast performance under ill-behaved functions where interpolations fail. The ITP method follows the same structure of standard bracketing strategies that keeps track of upper and lower bounds for the location of the root; but it also keeps track of the region where worst-case performance is kept upper-bounded. As a bracketing strategy, in each iteration the ITP queries the value of the function on one point and discards the part of the interval between two points where the function value shares the same sign. The queried point is calculated with three steps: it interpolates finding the regula falsi estimate, then it perturbes/truncates the estimate (similar to Regula falsi § Improvements in regula falsi) and then projects the perturbed estimate onto an interval in the neighbourhood of the bisection midpoint. The neighbourhood around the bisection point is calculated in each iteration in order to guarantee minmax optimality (Theorem 2.1 of ). The method depends on three hyper-parameters and where is the golden ratio : the first two control the size of the truncation and the third is a slack variable that controls the size of the interval for the projection step.
rdf:langString Em análise numérica, o método ITP, abreviação de Interpolar, Truncar e Projetar, é o primeiro algoritmo de busca de raízes a atingir a convergência superlinear do método secante garantindo o desempenho de pior caso do método de biseção. O método ITP segue a mesma estrutura das estratégias que mantém o controle dos limites superior e inferior para a localização da raiz; e, em adição, o método mantém o controle da região onde o desempenho do pior caso é mantido sob controle. Em cada iteração o método ITP consulta o valor da função em um ponto intermediário do intervalo e descarta a parte do intervalo entre dois pontos onde o valor da função compartilha o mesmo sinal . O método ITP também é o primeiro método com desempenho médio estritamente melhor do que o método de biseção sob qualquer distribuição contínua .
xsd:nonNegativeInteger 12388

data from the linked data cloud