Hyperreal number

http://dbpedia.org/resource/Hyperreal_number an entity of type: WikicatNumbers

في الرياضيات، وبالتحديد في ، الأعداد الحقيقية الفائقة (بالإنجليزية: hyperreal numbers)‏ أو الحقيقيات غير القياسية nonstandard reals (تمثل عادة ب *R) هي حقل مرتب يعتبر امتدادا لحقل الأعداد الحقيقية المرتب R يحقق transfer principle . هذا المبدأ يتيح إعادة تفسير مقولات الدرجة الأولى حول R على أنها صحيحة أيضا في *R . rdf:langString
Hyperreálné číslo je rigorózní způsob, jak zacházet s infinitními a veličinami: je to rozšíření reálné osy o další takovéto hodnoty. Přímočaré zacházení s takovými čísly v intuitivním slova smyslu vede k paradoxům, teorie však na nich staví. Hyperreálná čísla, o jejichž teorii je zásluhou Robinsona dokázáno, že je bezesporná právě když je bezesporná teorie čísel reálných, jsou důležitá hlavně díky této aplikaci. Hyperreálná čísla tvoří uspořádané těleso. rdf:langString
Un numero iperreale è un elemento cardine nell'analisi non standard, introdotta dalle ricerche di Abraham Robinson dell'università Yale nel 1966 sul suo libro Non-Standard Analysis. rdf:langString
비표준 해석학에서 초실수(超實數, 영어: hyperreal)는 실수에 무한대 원소들과 무한소 원소들을 포함하는 체이며, 실수에 대한 모든 1차 논리 명제가 그대로 성립하는 수 체계이다. 1800년대에, 이른바, 입실론-델타 방법은, 무한대와 무한소의 문제를 돌아갔다고 할 수 있는 반면, 초실수는 무한대와 무한소에 대한 직관을 현실화 했다보 볼 수 있다. rdf:langString
O conjunto dos números hiper-reais é uma maneira de tratar quantidades infinitas e infinitesimais. Os hiper-reais, ou reais não padronizados, *R, são uma extensão dos números reais R que contém números maioresdo que qualquer coisa na forma Esse número é infinito, e seu inverso é infinitesimal. O termo "hiper-real" foi introduzido por Edwin Hewitt em 1948. rdf:langString
Liczby hiperrzeczywiste (niestandardowe liczby rzeczywiste, liczby hiperrealne) – pojęcie ; niearchimedesowe rozszerzenie ciała liczb rzeczywistych. rdf:langString
Гіпердійсні числа (англ. hyper-real number) — розширення поля дійсних чисел , яке містить числа, більші, ніж усі такі, що подаються у вигляді суми Термін було введено американським математиком 1948 року. rdf:langString
超實數系統是為了嚴格處理無窮量(無窮大量和無窮小量)而提出的。自從微積分的發明以來,數學家、科學家和工程師等(包括牛頓和萊布尼茲在內)就一直廣泛地用無窮小量等概念。超實數集,或稱為非標準實數集,記爲,是實數集  的一個擴張;其中含有一種數,它們大於所有如下形式的數: (有限個) 這可以解釋為無窮大;而它們的倒數就作為無窮小量。 滿足如下性質:任何關於  的一階命題如果成立,則對  也成立。這種性質稱為。舉例來說,實數集的加法交換律 是關於  的一階命題。因此以下命題同樣成立: 也就是說超實數集同樣滿足加法交換律。 無窮小量的概念是否嚴格呢?此問題可以追溯到古希臘數學:數學家們如歐幾里得、阿基米德等,為了在一些證明裡繞開無窮小量的爭議以保證嚴格性,而采用了窮竭法等其它說明方式。而亞伯拉罕·魯濱遜在1960年代證明了, 超實數系統是相容的,當且僅當實數系統是相容的 換句話說,如果對實數的使用没有懷疑,那也可以放心使用超實數。在處理數學分析的問題時對超實數、尤其是傳達原理的使用,通稱為非標準分析。 rdf:langString
En matemàtiques, el conjunt dels nombres hiperreals constitueix una extensió dels nombres reals usuals, permetent donar un sentit rigorós a les nocions de quantitat infinitament petita o infinitament gran. Es pot evitar, llavors, l'ús dels passos al límit i de les expressions condicionades per un valor ε «positiu tan petit com es vulgui». No hi ha unicitat del conjunt , però la tria d'una extensió en particular no té gaire incidència en la pràctica. rdf:langString
Sistemo de hiperreelaj nombroj estas rigora matematika maniero pritrakti infinitojn kaj infinitezimojn. Tiuj kvantoj estis vaste uzataj en matematiko kelkajn jarcentojn antaŭ enkonduko de la hiperreeloj, sed ilia uzo ĉiam estis pli intuicia ol matematike rigora. Pro disvolvoj de dum 19-a kaj 20-a jarcentoj, oni povis difini kaj pritrakti ilin pli formale kaj rigore. Apliko de la hiperreeloj kaj de principo de transdono en analitiko donis starton de nova branĉo de matematika teorio, la . Multaj matematikistoj trovas ĝin pli logika, intuicia kaj komprenebla ol klasika . rdf:langString
In der Mathematik sind hyperreelle Zahlen ein zentraler Untersuchungsgegenstand der Nichtstandardanalysis. Die Menge der hyperreellen Zahlen wird meist als geschrieben; sie erweitert die reellen Zahlen um infinitesimal benachbarte Zahlen sowie um unendlich große (infinite) Zahlen. Durch die hyperreellen Zahlen ist eine Formulierung der Differential- und Integralrechnung ohne den Grenzwertbegriff möglich. rdf:langString
Los números hiperreales son una extensión del conjunto de los números reales que permiten entre otros formalizar algunas operaciones con infinitésimos, y probar algunos resultados clásicos del análisis real de manera más sencilla. El sistema de números hiperreales es una manera de tratar cantidades infinitas e infinitesimales. Los hiperreales o reales no estándar, , son una extensión de los números reales que contienen números mayores que (para cualquier número finito de términos). rdf:langString
In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form (for any finite number of terms). Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyper-real" was introduced by Edwin Hewitt in 1948. rdf:langString
En mathématiques, le corps ordonné des nombres hyperréels constitue une extension, notée *ℝ, des nombres réels usuels, permettant de donner un sens rigoureux aux notions de quantité infiniment petite ou infiniment grande. On peut éviter alors l'emploi des passages à la limite et des expressions conditionnées par une valeur ε « aussi petite que l’on veut ». Il n'y a pas unicité de l'ensemble *ℝ, mais le choix d'une extension en particulier n'a que peu d'incidence en pratique. rdf:langString
超実数(ちょうじっすう、英: hyperreal number)または超準実数(ちょうじゅんじっすう、英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体であり、 の形に書けるいかなる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。"hyper-real" の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理は、R についての一階述語論理の真なる主張は *R においても真であることを主張する。例えば、加法の可換則 x + y = y + x は、実数と全く同様に、超実数に対しても成り立つ。また、 R は実閉体であるから、*R も実閉体である。また、任意の整数 n に対して sin(πn) = 0 が成立するから、任意の超準整数 H に対しても sin(πH) = 0 が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。例えば、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することがある。つまり、f (x) の導関数は、 rdf:langString
Гипервещественные числа (гипердействительные числа) — расширение поля вещественных чисел , которое содержит числа, бо́льшие, чем все представимые в виде конечной суммы . Термин «гипервещественное число» (англ. hyper-real number) был предложен американским математиком в 1948 году. Теорию поля гипервещественных чисел как расширения поля вещественных чисел опубликовал в 1960-е годы Абрахам Робинсон, который назвал её «нестандартным анализом». Робинсон также доказал непротиворечивость этой теории (точнее, свёл проблему к непротиворечивости вещественных чисел). rdf:langString
Det hyperreella talsystemet är inom matematiken ett talsystem som utvidgar det reella talsystemet genom att även innehålla så kallade infinitesimaler. En positiv infinitesimal är ett tal som är mindre än alla positiva reella tal samtidigt som det är större än noll. Om betecknar en positiv infinitesimal så gäller med andra ord att där är vilket positivt reellt tal som helst. Det hyperreella talsystemet innehåller även inverser av positiva infinitesimaler - tal som är större än alla reella tal. Genom att byta tecken på positiva infinitesimaler får man negativa infinitesimaler och genom att invertera sådana får man tal som är mindre än alla reella tal.Den grundläggande idén om infinitesimaler återfinns långt tillbaka i historien. Redan för över 2000 år sedan använde sig Arkimedes av sådana rdf:langString
rdf:langString عدد حقيقي فائق
rdf:langString Nombre hiperreal
rdf:langString Hyperreálné číslo
rdf:langString Hyperreelle Zahl
rdf:langString Hiperreela nombro
rdf:langString Número hiperreal
rdf:langString Hyperreal number
rdf:langString Nombre hyperréel
rdf:langString Numero iperreale
rdf:langString 超実数
rdf:langString 초실수
rdf:langString Liczby hiperrzeczywiste
rdf:langString Número hiper-real
rdf:langString Гипервещественное число
rdf:langString Hyperreella tal
rdf:langString Гіпердійсні числа
rdf:langString 超实数 (非标准分析)
xsd:integer 51429
xsd:integer 1118664516
rdf:langString InternetArchiveBot
rdf:langString January 2020
rdf:langString yes
rdf:langString في الرياضيات، وبالتحديد في ، الأعداد الحقيقية الفائقة (بالإنجليزية: hyperreal numbers)‏ أو الحقيقيات غير القياسية nonstandard reals (تمثل عادة ب *R) هي حقل مرتب يعتبر امتدادا لحقل الأعداد الحقيقية المرتب R يحقق transfer principle . هذا المبدأ يتيح إعادة تفسير مقولات الدرجة الأولى حول R على أنها صحيحة أيضا في *R .
rdf:langString Hyperreálné číslo je rigorózní způsob, jak zacházet s infinitními a veličinami: je to rozšíření reálné osy o další takovéto hodnoty. Přímočaré zacházení s takovými čísly v intuitivním slova smyslu vede k paradoxům, teorie však na nich staví. Hyperreálná čísla, o jejichž teorii je zásluhou Robinsona dokázáno, že je bezesporná právě když je bezesporná teorie čísel reálných, jsou důležitá hlavně díky této aplikaci. Hyperreálná čísla tvoří uspořádané těleso.
rdf:langString En matemàtiques, el conjunt dels nombres hiperreals constitueix una extensió dels nombres reals usuals, permetent donar un sentit rigorós a les nocions de quantitat infinitament petita o infinitament gran. Es pot evitar, llavors, l'ús dels passos al límit i de les expressions condicionades per un valor ε «positiu tan petit com es vulgui». No hi ha unicitat del conjunt , però la tria d'una extensió en particular no té gaire incidència en la pràctica. Tal com es pot construir el conjunt dels nombres reals a partir de successions de nombres racionals, es pot construir un model dels nombres hiperreals a partir de successions de nombres reals. Tècnicament, s'utilitza una per a construir aquesta extensió. També es poden definir els nombres hiperreals basant-se en un model dels nombres reals.
rdf:langString Sistemo de hiperreelaj nombroj estas rigora matematika maniero pritrakti infinitojn kaj infinitezimojn. Tiuj kvantoj estis vaste uzataj en matematiko kelkajn jarcentojn antaŭ enkonduko de la hiperreeloj, sed ilia uzo ĉiam estis pli intuicia ol matematike rigora. Pro disvolvoj de dum 19-a kaj 20-a jarcentoj, oni povis difini kaj pritrakti ilin pli formale kaj rigore. La aro de hiperreeloj (foje ankaŭ nomataj nenormaj reeloj) *R estas korpa vastigaĵo de la aro de reeloj R, kiu enhavas nombrojn pli grandajn ol iu difinita reelo. Do, aro de hiperreeloj enhavas nombron pli grandan ol io ajn de la formo Tiu nombro estas la infinito, kaj ĝia inverto estas infinitezimo. La aro de hiperreeloj *R estas kunigo de aro R, aro de infinitoj kaj aro de infinitezimoj. Ĝi kongruas kun , laŭ kiu ĉiuj de , kiuj estas veraj por iu aro, ankaŭ veras por ĉiuj vastigaĵoj de la aro. Do, bazaj algebraj aksiomoj pri reeloj ankaŭ veras pri hiperreloj - ekzemple, komuteco, asocieco, distribueco ktp. Ekde unuaj logikistoj de Antikva Grekio oni disputis, ĉu estas logike ĝuste uzi senfinajn valorojn en argumentoj. Por eviti tian dubon, ekzemple, Eŭklido anstataŭigis tiajn pruvojn per aliaj teknikoj kiel En la 1960-aj jaroj pruvis, ke hiperreeloj estas logike koheraj se kaj nur se tiaj estas la reeloj. Tio forigis dubojn kaj timojn pri uzebleco de hiperreeloj, se oni pritraktas ilin laŭ logikaj reguloj, kiujn Robinson difinis. Apliko de la hiperreeloj kaj de principo de transdono en analitiko donis starton de nova branĉo de matematika teorio, la . Multaj matematikistoj trovas ĝin pli logika, intuicia kaj komprenebla ol klasika .
rdf:langString In der Mathematik sind hyperreelle Zahlen ein zentraler Untersuchungsgegenstand der Nichtstandardanalysis. Die Menge der hyperreellen Zahlen wird meist als geschrieben; sie erweitert die reellen Zahlen um infinitesimal benachbarte Zahlen sowie um unendlich große (infinite) Zahlen. Als Newton und Leibniz ihre Differentialrechnung mit „Fluxionen“ bzw. „Monaden“ durchführten, benutzten sie infinitesimale Zahlen, und auch Euler und Cauchy fanden sie nützlich. Trotzdem wurden diese Zahlen von Anfang an skeptisch betrachtet, und im 19. Jahrhundert wurde die Analysis durch die Einführung der Epsilon-delta-Definition des Grenzwertes und die Definition der reellen Zahlen durch Cauchy, Weierstraß und andere auf eine strenge Grundlage gestellt, die ohne infinitesimale Größen auskommt. Abraham Robinson zeigte dann in den 1960er Jahren, auf welche Weise unendlich große und kleine Zahlen streng formal definiert werden können, und eröffnete so das Gebiet der Nichtstandardanalysis. Die hier gegebene Konstruktion ist eine vereinfachte, aber nicht minder strenge Version, die zuerst von Lindstrom gegeben wurde. Durch die hyperreellen Zahlen ist eine Formulierung der Differential- und Integralrechnung ohne den Grenzwertbegriff möglich.
rdf:langString Los números hiperreales son una extensión del conjunto de los números reales que permiten entre otros formalizar algunas operaciones con infinitésimos, y probar algunos resultados clásicos del análisis real de manera más sencilla. El sistema de números hiperreales es una manera de tratar cantidades infinitas e infinitesimales. Los hiperreales o reales no estándar, , son una extensión de los números reales que contienen números mayores que (para cualquier número finito de términos). Tal número es infinito, y su recíproco infinitesimal. El término "hiper-real" fue presentado por Edwin Hewitt en 1948.​ Como estructura algebraica son un cuerpo no arquimediano y métricamente incompleto que contiene al conjunto arquimediano y completo identificable con los números reales. Formalmente pueden construirse de manera totalmente rigurosa a partir de una axiomatización de primer orden de los números reales. Dicha axiomatización es una y por tanto admite varios modelos no isomorfos, uno de ellos los números reales estándar y otro de ellos identificable con los hiperreales. Además si se pretende evitar la teoría de modelos puede ampliarse la teoría de los números reales mediante un predicado abstracto (semánticamente interpretable como "x es un número real estándar") y tres axiomas adicionales que describen dicho predicado (estos predicados permiten caracterizar la diferencia entre un número real estándar y uno hiperreal no convencional).
rdf:langString In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal (infinitely small but non-zero) quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form (for any finite number of terms). Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyper-real" was introduced by Edwin Hewitt in 1948. The hyperreal numbers satisfy the transfer principle, a rigorous version of Leibniz's heuristic law of continuity. The transfer principle states that true first-order statements about R are also valid in *R. For example, the commutative law of addition, x + y = y + x, holds for the hyperreals just as it does for the reals; since R is a real closed field, so is *R. Since for all integers n, one also has for all hyperintegers . The transfer principle for ultrapowers is a consequence of Łoś' theorem of 1955. Concerns about the soundness of arguments involving infinitesimals date back to ancient Greek mathematics, with Archimedes replacing such proofs with ones using other techniques such as the method of exhaustion. In the 1960s, Abraham Robinson proved that the hyperreals were logically consistent if and only if the reals were. This put to rest the fear that any proof involving infinitesimals might be unsound, provided that they were manipulated according to the logical rules that Robinson delineated. The application of hyperreal numbers and in particular the transfer principle to problems of analysis is called nonstandard analysis. One immediate application is the definition of the basic concepts of analysis such as the derivative and integral in a direct fashion, without passing via logical complications of multiple quantifiers. Thus, the derivative of f(x) becomes for an infinitesimal , where st(·) denotes the standard part function, which "rounds off" each finite hyperreal to the nearest real. Similarly, the integral is defined as the standard part of a suitable infinite sum.
rdf:langString En mathématiques, le corps ordonné des nombres hyperréels constitue une extension, notée *ℝ, des nombres réels usuels, permettant de donner un sens rigoureux aux notions de quantité infiniment petite ou infiniment grande. On peut éviter alors l'emploi des passages à la limite et des expressions conditionnées par une valeur ε « aussi petite que l’on veut ». Il n'y a pas unicité de l'ensemble *ℝ, mais le choix d'une extension en particulier n'a que peu d'incidence en pratique. Tout comme on peut construire l'ensemble des nombres réels à partir de suites de nombres rationnels, on peut construire un modèle des nombres hyperréels à partir de suites de nombres réels. Techniquement, on utilise une ultrapuissance pour construire cette extension. D'une manière équivalente, on peut définir les nombres hyperréels par le biais d'un modèle non standard des nombres réels.
rdf:langString Un numero iperreale è un elemento cardine nell'analisi non standard, introdotta dalle ricerche di Abraham Robinson dell'università Yale nel 1966 sul suo libro Non-Standard Analysis.
rdf:langString 비표준 해석학에서 초실수(超實數, 영어: hyperreal)는 실수에 무한대 원소들과 무한소 원소들을 포함하는 체이며, 실수에 대한 모든 1차 논리 명제가 그대로 성립하는 수 체계이다. 1800년대에, 이른바, 입실론-델타 방법은, 무한대와 무한소의 문제를 돌아갔다고 할 수 있는 반면, 초실수는 무한대와 무한소에 대한 직관을 현실화 했다보 볼 수 있다.
rdf:langString 超実数(ちょうじっすう、英: hyperreal number)または超準実数(ちょうじゅんじっすう、英: nonstandard reals)と呼ばれる数の体系は無限大量や無限小量を扱う方法の一つである。超実数の全体 *R は実数体 R の拡大体であり、 の形に書けるいかなる数よりも大きい元を含む。そのような数は無限大であり、その逆数は無限小である。"hyper-real" の語はが1948年に導入した。 超実数は(ライプニッツの経験則的なを厳密なものにした)を満たす。この移行原理は、R についての一階述語論理の真なる主張は *R においても真であることを主張する。例えば、加法の可換則 x + y = y + x は、実数と全く同様に、超実数に対しても成り立つ。また、 R は実閉体であるから、*R も実閉体である。また、任意の整数 n に対して sin(πn) = 0 が成立するから、任意の超準整数 H に対しても sin(πH) = 0 が成立する。超冪に対する移行原理は1955年のウォシュの定理の帰結である。 無限小を含むような論法の健全性に関する歴史は、アルキメデスがそのような証明を取り尽くし法など他の手法によって置き換えた、古代ギリシャ時代の数学にまで遡る。1960年代にはロビンソンが、超実数体が論理的に無矛盾であることと実数体が論理的に無矛盾であることが同値であることを示した。これは、ロビンソンが描いた論理的な規則に従って操作されなければ、あらゆる無限小を含む証明が不健全になる恐れが残ることを示している。 超実数の応用、特に解析学における諸問題への移行原理の適用は超準解析と呼ばれる。例えば、微分や積分のような解析学の基礎概念を複数の量化子を用いる論理的複雑さを回避して直接的に定義することがある。つまり、f (x) の導関数は、 になる。ただし、Δx は無限小超実数で、st(・) とは有限超実数から実数への関数で、「有限超実数にそれに無限に近いただ一つの実数への関数」というである。積分も同様に、適切な無限和の標準部によって定義される。
rdf:langString O conjunto dos números hiper-reais é uma maneira de tratar quantidades infinitas e infinitesimais. Os hiper-reais, ou reais não padronizados, *R, são uma extensão dos números reais R que contém números maioresdo que qualquer coisa na forma Esse número é infinito, e seu inverso é infinitesimal. O termo "hiper-real" foi introduzido por Edwin Hewitt em 1948.
rdf:langString Гипервещественные числа (гипердействительные числа) — расширение поля вещественных чисел , которое содержит числа, бо́льшие, чем все представимые в виде конечной суммы . Термин «гипервещественное число» (англ. hyper-real number) был предложен американским математиком в 1948 году. Теорию поля гипервещественных чисел как расширения поля вещественных чисел опубликовал в 1960-е годы Абрахам Робинсон, который назвал её «нестандартным анализом». Робинсон также доказал непротиворечивость этой теории (точнее, свёл проблему к непротиворечивости вещественных чисел). Теория гипервещественных чисел даёт строгий подход к исчислению бесконечно больших и бесконечно малых величин, которые в этом случае, в отличие от стандартного анализа, являются не переменными, а постоянными, то есть числами. В нестандартном анализе на современной основе реабилитируется восходящая к Лейбницу и его последователям идея о существовании актуальных бесконечно малых величин, отличных от нуля, — идея, которая в историческом развитии математического анализа была заменена понятием предела переменной величины. Любопытно, что представления об актуальных бесконечно больших и бесконечно малых величинах сохранялись в учебниках физики и других естественных наук, где часто встречаются фразы вроде «пусть — (бесконечно малый) элемент объёма…».
rdf:langString Liczby hiperrzeczywiste (niestandardowe liczby rzeczywiste, liczby hiperrealne) – pojęcie ; niearchimedesowe rozszerzenie ciała liczb rzeczywistych.
rdf:langString Det hyperreella talsystemet är inom matematiken ett talsystem som utvidgar det reella talsystemet genom att även innehålla så kallade infinitesimaler. En positiv infinitesimal är ett tal som är mindre än alla positiva reella tal samtidigt som det är större än noll. Om betecknar en positiv infinitesimal så gäller med andra ord att där är vilket positivt reellt tal som helst. Det hyperreella talsystemet innehåller även inverser av positiva infinitesimaler - tal som är större än alla reella tal. Genom att byta tecken på positiva infinitesimaler får man negativa infinitesimaler och genom att invertera sådana får man tal som är mindre än alla reella tal.Den grundläggande idén om infinitesimaler återfinns långt tillbaka i historien. Redan för över 2000 år sedan använde sig Arkimedes av sådana när han skulle beräkna ett bra närmevärde på pi. Infinitesimaler hade en stor betydelse i Leibniz uppbyggnad av det som senare ledde till analysen. Men det var först på 1960-talet som infinitesimaler fick en stringent matematisk grund av Abraham Robinson. I och med detta skapades en ny gren av matematiken: icke-standardanalysen. Där räknar man med hyperreella tal, vilket möjliggör en bevisföring i linje med de heuristiska argument som användes av Newton och Leibniz.
rdf:langString Гіпердійсні числа (англ. hyper-real number) — розширення поля дійсних чисел , яке містить числа, більші, ніж усі такі, що подаються у вигляді суми Термін було введено американським математиком 1948 року.
rdf:langString 超實數系統是為了嚴格處理無窮量(無窮大量和無窮小量)而提出的。自從微積分的發明以來,數學家、科學家和工程師等(包括牛頓和萊布尼茲在內)就一直廣泛地用無窮小量等概念。超實數集,或稱為非標準實數集,記爲,是實數集  的一個擴張;其中含有一種數,它們大於所有如下形式的數: (有限個) 這可以解釋為無窮大;而它們的倒數就作為無窮小量。 滿足如下性質:任何關於  的一階命題如果成立,則對  也成立。這種性質稱為。舉例來說,實數集的加法交換律 是關於  的一階命題。因此以下命題同樣成立: 也就是說超實數集同樣滿足加法交換律。 無窮小量的概念是否嚴格呢?此問題可以追溯到古希臘數學:數學家們如歐幾里得、阿基米德等,為了在一些證明裡繞開無窮小量的爭議以保證嚴格性,而采用了窮竭法等其它說明方式。而亞伯拉罕·魯濱遜在1960年代證明了, 超實數系統是相容的,當且僅當實數系統是相容的 換句話說,如果對實數的使用没有懷疑,那也可以放心使用超實數。在處理數學分析的問題時對超實數、尤其是傳達原理的使用,通稱為非標準分析。
xsd:nonNegativeInteger 32220

data from the linked data cloud