Hyperelliptic curve

http://dbpedia.org/resource/Hyperelliptic_curve an entity of type: Abstraction100002137

En geometria algebraica, una Corba hiperel·líptica (sobre els nombres complexos) és una corba algebraica donada per una equació de la forma On f(x) és un polinomi de grau n > 4 amb n arrels distintes. Una funció hiperel·líptica és una funció del de tal corba; o possiblement la de la corba, aquests dos conceptes són el mateix pel cas de les funcions el·líptiques, però diferents en aquest cas. rdf:langString
Eine hyperelliptische Kurve ist eine algebraische Varietät, das heißt, eine Menge von Punkten aus einem Körper, die eine Polynomgleichung sowie einige Nebenbedingungen erfüllen. Sie werden ähnlich konstruiert wie Elliptische Kurven. Hyperelliptische Kurven spielen in der Kryptographie im Gegensatz zu diesen noch keine allzu große, jedoch zunehmende Rolle. Ihre Eigenschaften sind noch nicht weitgehend genug erforscht, um deren gesteigerte Nutzbarkeit für die Kryptographie abschätzen zu können. Zudem ist die Rechnung in hyperelliptischen Kurven komplizierter als in elliptischen Kurven, so dass deren derzeitige praktische Anwendung noch nicht nützlich erscheint. rdf:langString
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0). A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions. rdf:langString
En géométrie algébrique, une courbe hyperelliptique est un cas particulier de courbe algébrique de genre g > 1 donnée par une équation de la forme : où f(x) est un polynôme de degré n = 2g + 1 > 4 ou avec n = 2g + 2 > 4 racines distinctes et h(x) est un polynôme de degré strictement inférieur g + 2 (si la caractéristique du corps commutatif n'est pas 2, on peut prendre h(x) = 0). Une fonction hyperelliptique est un élément du corps de fonctions d'une telle courbe ou éventuellement de la variété jacobienne de la courbe, ces deux concepts étant les mêmes dans le cas de la fonction elliptique, mais différents dans le cas présent. rdf:langString
대수기하학에서 초타원 곡선(超楕圓曲線, 영어: hyperelliptic curve)은 사영 직선 위의 2차 분지 피복을 이루는 대수 곡선이다. rdf:langString
代数幾何学では、超楕円曲線(hyperelliptic curve)は、次の形の方程式で与えられる代数曲線である。 ここに、f(x) は n 個の異なった根を持つ次数 n > 4 の多項式である。超楕円函数(hyperelliptic function)は、そのような曲線上の、もしくは曲線上のヤコビ多様体上の函数体の元である。これらの 2つの概念は楕円曲線の場合には一致するが、しかし、現在のケースでは異なっている。図 1 は、 としたときの、 のグラフである。 rdf:langString
rdf:langString Corba hiperel·líptica
rdf:langString Hyperelliptische Kurve
rdf:langString Courbe hyperelliptique
rdf:langString Hyperelliptic curve
rdf:langString 초타원 곡선
rdf:langString 超楕円曲線
xsd:integer 499361
xsd:integer 1117358858
rdf:langString Hyper-elliptic_curve
rdf:langString Hyper-elliptic curve
rdf:langString En geometria algebraica, una Corba hiperel·líptica (sobre els nombres complexos) és una corba algebraica donada per una equació de la forma On f(x) és un polinomi de grau n > 4 amb n arrels distintes. Una funció hiperel·líptica és una funció del de tal corba; o possiblement la de la corba, aquests dos conceptes són el mateix pel cas de les funcions el·líptiques, però diferents en aquest cas.
rdf:langString Eine hyperelliptische Kurve ist eine algebraische Varietät, das heißt, eine Menge von Punkten aus einem Körper, die eine Polynomgleichung sowie einige Nebenbedingungen erfüllen. Sie werden ähnlich konstruiert wie Elliptische Kurven. Hyperelliptische Kurven spielen in der Kryptographie im Gegensatz zu diesen noch keine allzu große, jedoch zunehmende Rolle. Ihre Eigenschaften sind noch nicht weitgehend genug erforscht, um deren gesteigerte Nutzbarkeit für die Kryptographie abschätzen zu können. Zudem ist die Rechnung in hyperelliptischen Kurven komplizierter als in elliptischen Kurven, so dass deren derzeitige praktische Anwendung noch nicht nützlich erscheint.
rdf:langString In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus g > 1, given by an equation of the form where f(x) is a polynomial of degree n = 2g + 1 > 4 or n = 2g + 2 > 4 with n distinct roots, and h(x) is a polynomial of degree < g + 2 (if the characteristic of the ground field is not 2, one can take h(x) = 0). A hyperelliptic function is an element of the function field of such a curve, or of the Jacobian variety on the curve; these two concepts are identical for elliptic functions, but different for hyperelliptic functions.
rdf:langString En géométrie algébrique, une courbe hyperelliptique est un cas particulier de courbe algébrique de genre g > 1 donnée par une équation de la forme : où f(x) est un polynôme de degré n = 2g + 1 > 4 ou avec n = 2g + 2 > 4 racines distinctes et h(x) est un polynôme de degré strictement inférieur g + 2 (si la caractéristique du corps commutatif n'est pas 2, on peut prendre h(x) = 0). Une fonction hyperelliptique est un élément du corps de fonctions d'une telle courbe ou éventuellement de la variété jacobienne de la courbe, ces deux concepts étant les mêmes dans le cas de la fonction elliptique, mais différents dans le cas présent.
rdf:langString 대수기하학에서 초타원 곡선(超楕圓曲線, 영어: hyperelliptic curve)은 사영 직선 위의 2차 분지 피복을 이루는 대수 곡선이다.
rdf:langString 代数幾何学では、超楕円曲線(hyperelliptic curve)は、次の形の方程式で与えられる代数曲線である。 ここに、f(x) は n 個の異なった根を持つ次数 n > 4 の多項式である。超楕円函数(hyperelliptic function)は、そのような曲線上の、もしくは曲線上のヤコビ多様体上の函数体の元である。これらの 2つの概念は楕円曲線の場合には一致するが、しかし、現在のケースでは異なっている。図 1 は、 としたときの、 のグラフである。
xsd:nonNegativeInteger 7507

data from the linked data cloud