Hyperbolic motion

http://dbpedia.org/resource/Hyperbolic_motion an entity of type: Thing

في الهندسة، الحركة الزائدية أو الحركة القطعية الزائدية هي رسم نموذج للهندسة القطعية الزائدية، يحافظ على قياس المسافة في النموذج. يشبه هذا الرسم تعيين التطابق في الهندسة الإقليدية، الذي هو تركيبة من الدورانات والترميز. تستخدم الحركة الزائدية لربط الهياكل داخل النموذج. ينتج عن جمع جميع الحركات الزائدية تكوين الزمرة التي تميز الهندسة وفقًا . تلاحظ الحركة الزائدية في نموذج HP = {(x,y): y > 0} مع تحولات هندسية معينة. يوصف نصف المستوى أيضًا بالإحداثيات القطبية كالتالي : HP = {(r cos a, r sin a): 0 < a < π, r > 0 }. وإذا افترضنا أن p = (x,y) or p = (r cos a, r sin a), p ∈ HP. rdf:langString
In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion. rdf:langString
En géométrie, les déplacements hyperboliques sont les isométries d'un espace hyperbolique préservant l'orientation, autrement dit les transformations de cet espace préservant les distances et les angles (orientés), et en particulier conservant les alignements. Pour la composition des applications, ces déplacements forment un groupe topologique, et même un groupe de Lie ; ce groupe caractérise l'espace, selon une approche développée par Felix Klein dans son programme d'Erlangen. rdf:langString
rdf:langString حركة زائدية
rdf:langString Hyperbolic motion
rdf:langString Déplacement hyperbolique
xsd:integer 1229416
xsd:integer 1070063744
rdf:langString في الهندسة، الحركة الزائدية أو الحركة القطعية الزائدية هي رسم نموذج للهندسة القطعية الزائدية، يحافظ على قياس المسافة في النموذج. يشبه هذا الرسم تعيين التطابق في الهندسة الإقليدية، الذي هو تركيبة من الدورانات والترميز. تستخدم الحركة الزائدية لربط الهياكل داخل النموذج. ينتج عن جمع جميع الحركات الزائدية تكوين الزمرة التي تميز الهندسة وفقًا . تلاحظ الحركة الزائدية في نموذج HP = {(x,y): y > 0} مع تحولات هندسية معينة. يوصف نصف المستوى أيضًا بالإحداثيات القطبية كالتالي : HP = {(r cos a, r sin a): 0 < a < π, r > 0 }. وإذا افترضنا أن p = (x,y) or p = (r cos a, r sin a), p ∈ HP. هناك ثلاثة حركات قطعية زائدية أساسية : p → q = (x + c, y ), c ∈ Rp → q = (sx, sy ), s > 0p → q = (r −1 cos a, r −1 sin a ) الحركة القطعية الزائدية العامة هو دالة متراكبة من حركات قطعية زائدية أساسية.
rdf:langString In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion. Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute. The proviso is that the absolute must be an invariant set of all hyperbolic motions. The absolute divides the plane into two connected components, and hyperbolic motions must not permute these components. One of the most prevalent contexts for inversive geometry and hyperbolic motions is in the study of mappings of the complex plane by Möbius transformations. Textbooks on complex functions often mention two common models of hyperbolic geometry: the Poincaré half-plane model where the absolute is the real line on the complex plane, and the Poincaré disk model where the absolute is the unit circle in the complex plane.Hyperbolic motions can also be described on the hyperboloid model of hyperbolic geometry. This article exhibits these examples of the use of hyperbolic motions: the extension of the metric to the half-plane, and in the location of a quasi-sphere of a hypercomplex number system.
rdf:langString En géométrie, les déplacements hyperboliques sont les isométries d'un espace hyperbolique préservant l'orientation, autrement dit les transformations de cet espace préservant les distances et les angles (orientés), et en particulier conservant les alignements. Pour la composition des applications, ces déplacements forment un groupe topologique, et même un groupe de Lie ; ce groupe caractérise l'espace, selon une approche développée par Felix Klein dans son programme d'Erlangen. Comme en géométrie euclidienne, on montre que les déplacements peuvent s'exprimer comme composés de symétries orthogonales (qui sont des antidéplacements) ; cela permet de les classifier (par exemple en en déterminant les points fixes).
xsd:nonNegativeInteger 9641

data from the linked data cloud