Hyperbolic 3-manifold
http://dbpedia.org/resource/Hyperbolic_3-manifold an entity of type: Artifact100021939
数学において双曲3次元多様体(そうきょく3じげんたようたい、英: Hyperbolic 3-manifold)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。
rdf:langString
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group).
rdf:langString
rdf:langString
Hyperbolic 3-manifold
rdf:langString
双曲3次元多様体
xsd:integer
1237700
xsd:integer
1118842769
rdf:langString
In mathematics, more precisely in topology and differential geometry, a hyperbolic 3–manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to -1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries (a Kleinian group). Hyperbolic 3–manifolds of finite volume have a particular importance in 3–dimensional topology as follows from Thurston's geometrisation conjecture proved by Perelman. The study of Kleinian groups is also an important topic in geometric group theory.
rdf:langString
数学において双曲3次元多様体(そうきょく3じげんたようたい、英: Hyperbolic 3-manifold)とは、定数断面曲率 -1 を持つ完備リーマン計量を備えるのことを言う。これは言い換えると、自由かつに作用する双曲等長の部分群による3次元の商である。を参照されたい。 この多様体の厚薄分解は、閉測地線の管状近傍からなる薄い部分と、ユークリッド曲面と閉半直線の積であるエンドからなる。この多様体の体積が有限であるための必要十分条件は、その厚い部分がコンパクトであることである。この場合、エンドは閉半直線を横切るトーラスの形をしており、尖点(cusp)と呼ばれる。
xsd:nonNegativeInteger
16552