Hydrogen silsesquioxane

http://dbpedia.org/resource/Hydrogen_silsesquioxane an entity of type: WikicatOpticalMaterials

Hydrogen silsesquioxane(s) (HSQ, H-SiOx, THn, H-resin) are inorganic compounds with the empirical formula [HSiO3/2]n. The cubic H8Si8O12 (TH8) is used as the visual representation for HSQ. TH8, TH10, TH12, and TH14 have been characterized by EA), gas chromatography–mass spectroscopy (GC-MS), IR spectroscopy, and NMR spectroscopy . rdf:langString
Силсесквиоксан водорода (англ. HSQ) — полимерное кремнийорганическое соединение с общей формулой (HSiO3/2)8n, применяемое как негативный резист c добавлением в электронно-лучевой литографии. Применяется как заменитель ПММА. При толщине плёнки резиста менее 25 нм демонстрирует разрешение лучше чем 10 нм. Электронный пучок разрушает полимерную цепь превращая резист в аморфный оксид кремния, используемого для стойкой к плазменному травлению маски. NaOH или NH4OH действуют как проявитель на силсесквиоксан водорода в результате чего происходит выделение водорода. Резист очень чувствителен к старению, поэтому для свежеприготовленного вещества получается лучшее разрешение с шириной линии 10 нм. rdf:langString
rdf:langString Hydrogen silsesquioxane
rdf:langString Силсесквиоксан водорода
xsd:integer 20612358
xsd:integer 1109925766
rdf:langString Hydrogen silsesquioxane(s) (HSQ, H-SiOx, THn, H-resin) are inorganic compounds with the empirical formula [HSiO3/2]n. The cubic H8Si8O12 (TH8) is used as the visual representation for HSQ. TH8, TH10, TH12, and TH14 have been characterized by EA), gas chromatography–mass spectroscopy (GC-MS), IR spectroscopy, and NMR spectroscopy . High purity semiconductor-grade HSQ has been investigated as a negative resist in photolithography and electron-beam (e-beam) lithography. HSQ is commonly delivered in methyl isobutyl ketone (MIBK) and can be used to form 0.01–2 µm films on substrates/wafers. When exposed to electrons or extreme ultraviolet radiation (EUV), HSQ cross-links via hydrogen evolution concomitant with Si-O bond crosslinking. Sufficiently dosed and exposed regions form a low dielectric constant (low-k) Si rich oxide that is chemically resistant/insoluble towards developers, such as tetramethylammonium hydroxide (TMAH). Sub-10 nm patterning is achievable with HSQ. The nanoscale patterning capabilities and low-k of the Si rich oxide produced is potentially of broad scope of nano applications and devices. HSQ has been available as 1 and 6% (wt%) MIBK solutions from Dow Inc. (Formally Dow Corning), called XR-1541-001 and XR-1541-006, respectively. HSQ in MIBK has a short shelf life. Alternatively, Applied Quantum Materials Inc. (AQM) produces HSQ with a longer shelf life., AQM HSQ solutions are available in the United States from DisChem, Inc.
rdf:langString Силсесквиоксан водорода (англ. HSQ) — полимерное кремнийорганическое соединение с общей формулой (HSiO3/2)8n, применяемое как негативный резист c добавлением в электронно-лучевой литографии. Применяется как заменитель ПММА. При толщине плёнки резиста менее 25 нм демонстрирует разрешение лучше чем 10 нм. Электронный пучок разрушает полимерную цепь превращая резист в аморфный оксид кремния, используемого для стойкой к плазменному травлению маски. NaOH или NH4OH действуют как проявитель на силсесквиоксан водорода в результате чего происходит выделение водорода. Резист очень чувствителен к старению, поэтому для свежеприготовленного вещества получается лучшее разрешение с шириной линии 10 нм. Резист не используется в чистом виде, а обычно растворяется в метил изобутил кетоне 1-20 % по весу (Dow Corning XR-1541). Хранится до полугода при 5 °C. Резист применяется в нанопечатной литографии так как чувствителен к области крайнего ультрафиолета. Материал обладает низким показателем диэлектрической проницаемости (2,2 после отжига), что делает его хорошим изолятором. Толщина резиста в 20 нм позволяет делать одиночные линии в 6 нм или 7 нм линии разделённые 20 нм промежутками при толщине резиста 10 нм для электронного пучка с энергией 100 кэВ. Как оказалось, толщина резиста имеет решающее значение для разрешения. HSQ как резист демонстрирует высокое разрешение и относительно низкую дозу для нанесению шаблона. Также высокие стабильность и сопротивление ионному травлению позволяет использовать этот резист для создания массивов близкорасположенных наноструктур. Для нанесения 10 нм слоя HSQ на кремниевую пластину использовался раствор HSQ в (FOx-12). Для максимального разрешения использовался литограф Raith 150-TWO EBL с энергией пучка 10 кэВ, током 160 пкА и апертурой 20 мкм. Линейная доза составляла 5 нК/см. Для проявления использовался водный раствор NaOH 1 % и NaCl 4 % при 24 °С, в течение 15 секунд, после чего подложка промывалась в деионизированной воде более 1 минуты для удаления соли и сушилась в потоке азота. Использование соли мотивировано с точки зрения высокой селективности по сравнению с обычно используемыми проявителями такими как водный раствор 1 % NaOH и 25 % гидроксид тетраметиламмония. HSQ демонстрирует эффект старения, когда результат различается при использовании старого резиста и только что приготовленного. Проявление в целом происходит неравномерно во времени и с увеличением времени замедляется, что является признаком самолимитированного процесса, который связан с (англ. cross-linked). 15 секунд проявления хватает для полного проявления тонких плёнок резиста. Основным параметром, определяющим разрешение электронной литографии для HSQ, является функция рассеяния точки, которая, в свою очередь, в основном зависит от рассеяния пучка в резисте и вторичных электронов. Экспериментально установлено, что увеличение толщины резиста приводит к большему рассеянию пучка до какой-то критической толщины, начиная с которой энергия пучка не важна для разрешения. Но если толщина плёнки больше критической, то чтобы нивелировать этот эффект нужно увеличивать энергию электронов. Для толщины плёнки 25 нм, энергия в диапазоне от 10 кэВ до 30 кэВ слабо влияет на разрешение. Для наилучшего разрешения толщина резиста должна быть 10 нм, а подложка как можно тоньше. Для наименьшего размера пучка использовалась Hitachi HD 2700C с энергией пучка 200 кэВ и холодным эмиттером, что позволяло достичь диаметра пучка 0,15 нм. Для этих параметров минимальное расстояние между элементами составляло 2,1 нм.
xsd:nonNegativeInteger 4881

data from the linked data cloud