Hurwitz surface
http://dbpedia.org/resource/Hurwitz_surface an entity of type: Bone
Поверхность Гурвица — компактная риманова поверхность, имеющая в точности 84(g − 1) автоморфизмов, где g — род поверхности. Их также называют кривыми Гурвица, понимая их при этом как комплексные алгебраические кривые (комплексная размерность 1 соответствует вещественной размерности 2). Названа в честь немецкого математика Адольфа Гурвица.
rdf:langString
在黎曼曲面理論和中,赫爾維茨曲面(英語:Hurwitz surface)是一個緊湊精確的 84(g − 1) 黎曼曲面構造,由阿道夫·赫維茲所命名的曲面。其中g是該曲面的虧格。這個數字是赫維茨對同構定理(Hurwitz 1893)的最大值。若將它們解釋為複數的代數曲線(複數1維=實數2維)的話,也可以將之稱為赫爾維茨曲線。 赫爾維茨曲面的是撓的正規子群的有限索引。其有限商群也正好是其同構群。
rdf:langString
In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with precisely 84(g − 1) automorphisms, where g is the genus of the surface. This number is maximal by virtue of Hurwitz's theorem on automorphisms. They are also referred to as Hurwitz curves, interpreting them as complex algebraic curves (complex dimension 1 = real dimension 2).
rdf:langString
rdf:langString
Hurwitz surface
rdf:langString
Поверхность Гурвица
rdf:langString
赫爾維茨曲面
xsd:integer
12807841
xsd:integer
1017835317
rdf:langString
In Riemann surface theory and hyperbolic geometry, a Hurwitz surface, named after Adolf Hurwitz, is a compact Riemann surface with precisely 84(g − 1) automorphisms, where g is the genus of the surface. This number is maximal by virtue of Hurwitz's theorem on automorphisms. They are also referred to as Hurwitz curves, interpreting them as complex algebraic curves (complex dimension 1 = real dimension 2). The Fuchsian group of a Hurwitz surface is a finite index torsionfree normal subgroup of the (ordinary) (2,3,7) triangle group. The finite quotient group is precisely the automorphism group. Automorphisms of complex algebraic curves are orientation-preserving automorphisms of the underlying real surface; if one allows orientation-reversing isometries, this yields a group twice as large, of order 168(g − 1), which is sometimes of interest. A note on terminology – in this and other contexts, the "(2,3,7) triangle group" most often refers, not to the full triangle group Δ(2,3,7) (the Coxeter group with Schwarz triangle (2,3,7) or a realization as a hyperbolic reflection group), but rather to the ordinary triangle group (the von Dyck group) D(2,3,7) of orientation-preserving maps (the rotation group), which is index 2. The group of complex automorphisms is a quotient of the ordinary (orientation-preserving) triangle group, while the group of (possibly orientation-reversing) isometries is a quotient of the full triangle group.
rdf:langString
Поверхность Гурвица — компактная риманова поверхность, имеющая в точности 84(g − 1) автоморфизмов, где g — род поверхности. Их также называют кривыми Гурвица, понимая их при этом как комплексные алгебраические кривые (комплексная размерность 1 соответствует вещественной размерности 2). Названа в честь немецкого математика Адольфа Гурвица.
rdf:langString
在黎曼曲面理論和中,赫爾維茨曲面(英語:Hurwitz surface)是一個緊湊精確的 84(g − 1) 黎曼曲面構造,由阿道夫·赫維茲所命名的曲面。其中g是該曲面的虧格。這個數字是赫維茨對同構定理(Hurwitz 1893)的最大值。若將它們解釋為複數的代數曲線(複數1維=實數2維)的話,也可以將之稱為赫爾維茨曲線。 赫爾維茨曲面的是撓的正規子群的有限索引。其有限商群也正好是其同構群。
xsd:nonNegativeInteger
5334