Hurwitz quaternion
http://dbpedia.org/resource/Hurwitz_quaternion an entity of type: WikicatNumbers
Les quaternions de Hurwitz portent ce nom en l'honneur du mathématicien allemand Adolf Hurwitz.
rdf:langString
Hurwitzův kvaternion je v matematice označení pro takový kvaternion, který má buď všechny koeficienty celočíselné nebo má všechny koeficienty tvořené polocelými čísly (část koeficientů celých a část polocelých je tedy nepřípustná). Formální vyjádření množiny všech Hurwitzových kvaternionů je tedy: Tato množina je uzavřená na sčítání i násobení a tvoří tedy okruhu všech kvaternionů. Hurwitzovy kvaterniony zavedl v roce 1919 německý matematik . Výhodou Hurwitzových kvaternionů oproti Lipschitzovým je, že tvoří eukleidovský obor a tedy i obor s jednoznačným rozkladem.
rdf:langString
Eine Hurwitzquaternion (oder Hurwitz-Ganzzahl) in der Mathematik ist eine Quaternion, deren vier Koeffizienten entweder alle (rational-)ganzzahlig oder alle halbzahlig (Hälften ungerader ganzer Zahlen) sind – Mischungen von Ganzzahlen und Halbzahlen sind also unzulässig. Die Menge aller Hurwitzquaternionen ist . Sie bildet in ihrem Quotientenkörper, dem Divisionsring (Schiefkörper) der Quaternionen mit rationalen Koeffizienten , Eine Lipschitzquaternion (oder Lipschitz-Ganzzahl) ist eine Quaternion, deren Koeffizienten alle ganzzahlig sind. Die Menge aller Lipschitzquaternionen
rdf:langString
In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are either all integers or all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz quaternions is That is, either a, b, c, d are all integers, or they are all half-integers.H is closed under quaternion multiplication and addition, which makes it a subring of the ring of all quaternions H. Hurwitz quaternions were introduced by Adolf Hurwitz.
rdf:langString
En matemáticas, un cuaternión de Hurwitz (o entero de Hurwitz) es un cuaternión cuyos componentes son o todos enteros o todos semienteros (mitades de un entero impar; mezclas de enteros y semienteros quedan excluidas). El conjunto de todos los cuaterniones de Hurwitz es es cerrado bajo multiplicación y adición de cuaterniones, lo cual forma un subanillo del anillo de todos los cuaterniones . Los cuaterniones de Hurwitz deben su nombre al matemático alemán Adolf Hurwitz, quien los introdujo en 1919.
rdf:langString
В математике кватернионом Гурвица (или целым числом Гурвица) называется кватернион, компоненты которого либо все целые, либо все полуцелые (половины нечётных чисел; смесь целых и полуцелых недопустима). Множество всех кватернионов Гурвица Можно показать, что H замкнуто относительно умножения и сложения, что делает его подкольцом кольца всех кватернионов. Кватернион Липшица (или Целое Липшица) — это кватернион, все компоненты которого целые числа. Множество всех кватернионов Липшица формирует подкольцо в кольце кватернионов Гурвица H.
rdf:langString
rdf:langString
Hurwitz quaternion
rdf:langString
Hurwitzův kvaternion
rdf:langString
Hurwitzquaternion
rdf:langString
Cuaternión de Hurwitz
rdf:langString
Quaternions de Hurwitz
rdf:langString
Кватернион Гурвица
rdf:langString
Кватерніон Гурвіца
xsd:integer
772241
xsd:integer
1079203640
rdf:langString
Adolf Hurwitz
rdf:langString
Adolf
rdf:langString
Hurwitz
xsd:integer
1919
rdf:langString
Hurwitzův kvaternion je v matematice označení pro takový kvaternion, který má buď všechny koeficienty celočíselné nebo má všechny koeficienty tvořené polocelými čísly (část koeficientů celých a část polocelých je tedy nepřípustná). Formální vyjádření množiny všech Hurwitzových kvaternionů je tedy: Tato množina je uzavřená na sčítání i násobení a tvoří tedy okruhu všech kvaternionů. Hurwitzovy kvaterniony zavedl v roce 1919 německý matematik . Příbuzným pojmem je Lipschitzův kvaternion, což je kvaternion se všemi koeficienty celočíselnými. Formální vyjádření množiny Lipschitzových kvaternionů je tedy: I Lipschitzovy kvaterniony jsou uzavřené na sčítání a násobení, tvoří tedy okruh, který je podokruhem Hurwitzových kvaternionů. Lipschitzovy kvaterniony se nazývají podle německého matematika Rudolfa Lipschitze. Výhodou Hurwitzových kvaternionů oproti Lipschitzovým je, že tvoří eukleidovský obor a tedy i obor s jednoznačným rozkladem.
rdf:langString
Eine Hurwitzquaternion (oder Hurwitz-Ganzzahl) in der Mathematik ist eine Quaternion, deren vier Koeffizienten entweder alle (rational-)ganzzahlig oder alle halbzahlig (Hälften ungerader ganzer Zahlen) sind – Mischungen von Ganzzahlen und Halbzahlen sind also unzulässig. Die Menge aller Hurwitzquaternionen ist . Sie bildet in ihrem Quotientenkörper, dem Divisionsring (Schiefkörper) der Quaternionen mit rationalen Koeffizienten , eine maximale -Ordnung. ist der kleinste Unterkörper des Quaternionenschiefkörpers mit nicht-kommutativer Multiplikation. Andererseits ist seine Vervollständigung (Komplettierung) für die Betrags-Metrik gerade wieder . Eine Lipschitzquaternion (oder Lipschitz-Ganzzahl) ist eine Quaternion, deren Koeffizienten alle ganzzahlig sind. Die Menge aller Lipschitzquaternionen ist ein (nicht-kommutativer) Unterring von (aber kein Ideal!). und haben denselben Quotientenkörper . Im Unterschied zu ist maximal als Ganzheitsring und zusätzlich ein euklidischer Ring, d. h., kennt eine Division mit kleinem Rest und einen euklidischen Algorithmus. Der Artikel behandelt die wichtigsten algebraischen Eigenschaften inklusive Symmetrien von und deren geometrische Auswirkungen.Ferner lässt sich exemplarisch verfolgen, inwieweit Begriffe, die man von den kommutativen Ringen her kennt und die häufig nur dort definiert werden, fürs nicht-kommutative Umfeld angepasst werden können.
rdf:langString
En matemáticas, un cuaternión de Hurwitz (o entero de Hurwitz) es un cuaternión cuyos componentes son o todos enteros o todos semienteros (mitades de un entero impar; mezclas de enteros y semienteros quedan excluidas). El conjunto de todos los cuaterniones de Hurwitz es es cerrado bajo multiplicación y adición de cuaterniones, lo cual forma un subanillo del anillo de todos los cuaterniones . Los cuaterniones de Hurwitz deben su nombre al matemático alemán Adolf Hurwitz, quien los introdujo en 1919. Un cuaternión de Lipschitz (o entero de Lipschitz) es un cuaternión cuyos componentes son todos enteros. El conjunto de todos los cuaterniones de Lipschitz forman un subanillo de los cuaterniones de Hurwitz . Los enteros de Hurwitz tienen la ventaja sobre los de Lipschitz de que en ellos es posible realizar una división euclídea, obteniendo un pequeño resto.
rdf:langString
In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are either all integers or all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz quaternions is That is, either a, b, c, d are all integers, or they are all half-integers.H is closed under quaternion multiplication and addition, which makes it a subring of the ring of all quaternions H. Hurwitz quaternions were introduced by Adolf Hurwitz. A Lipschitz quaternion (or Lipschitz integer) is a quaternion whose components are all integers. The set of all Lipschitz quaternions forms a subring of the Hurwitz quaternions H. Hurwitz integers have the advantage over Lipschitz integers that it is possible to perform Euclidean division on them, obtaining a small remainder. Both the Hurwitz and Lipschitz quaternions are examples of noncommutative domains which are not division rings.
rdf:langString
Les quaternions de Hurwitz portent ce nom en l'honneur du mathématicien allemand Adolf Hurwitz.
rdf:langString
В математике кватернионом Гурвица (или целым числом Гурвица) называется кватернион, компоненты которого либо все целые, либо все полуцелые (половины нечётных чисел; смесь целых и полуцелых недопустима). Множество всех кватернионов Гурвица Можно показать, что H замкнуто относительно умножения и сложения, что делает его подкольцом кольца всех кватернионов. Кватернион Липшица (или Целое Липшица) — это кватернион, все компоненты которого целые числа. Множество всех кватернионов Липшица формирует подкольцо в кольце кватернионов Гурвица H. В качестве группы H является свободной абелевой группой с образующими {½(1+i+j+k), i, j, k}. Она, таким образом, образует решетку в R4. Эта решетка известна как решётка F4, поскольку она является полупростой алгебры Ли F4. Кватернион Липшица L образует подрешётку в H. Группа единиц в L образует Q = {±1, ±i, ±j, ±k}. Группа единиц в H не является абелевой и образует группу 24-го порядка, известную как бинарная группа тетраэдра. Эта группа включает в себя 8 элементов Q и 16 кватернионов {½(±1±i±j±k)}, где знаки берутся в любой комбинации. Кватернионная группа является нормальной подгруппой бинарной группы тетраэдра U(H). Элементы U(H), имея норму 1, образуют вершины 24-гранника, вписанного в 3-сферу. Норма кватерниона Гурвица, заданного формулой , всегда представляет собой целое число. По теореме Лагранжа любое неотрицательное целое число можно представить в виде суммы четырёх (или менее) квадратов целых чисел. Таким образом, любое неотрицательное целое число является нормой некоего кватерниона Липшица (или Гурвица). Целое число Гурвица является простым элементом в том и только в том случае, когда его норма — простое число.
xsd:nonNegativeInteger
8588