Homotopy equivalence
http://dbpedia.org/resource/Homotopy_equivalence
En mathématiques, une équivalence d'homotopie est une application admettant une réciproque à homotopie près. Autrement dit, deux applications sont des équivalences d'homotopie réciproques si leurs composées sont homotopes à l'identité sur leurs espaces de départ respectifs. Cette notion permet de définir le cadre de la théorie de l'homotopie. Dans le cadre de la topologie, une équivalence d'homotopie est un isomorphisme dans la catégorie (en). En particulier, toute équivalence d'homotopie est un quasi-isomorphisme, c'est-à-dire qu'elle induit un isomorphisme en homologie.
rdf:langString
대수적 위상수학에서 호모토피 동치(homotopy同値, 영어: homotopy equivalence)는 위상 공간의 분류의 하나이다. 이는 위상 동형보다 더 거칠며, 호모토피 군이나 특이 호몰로지와 같은 불변량을 보존하지만 차원과 같은 성질은 보존하지 않는다.
rdf:langString
In de topologie, die eigenschappen van ruimten bestudeert die bij continue vervorming ongewijzigd blijven, heten twee continue functies tussen een paar topologische ruimten homotopie-equivalent of homotoop-equivalent (Oudgrieks homos = identiek en topos = plaats) als de ene door "continue vervorming" in de andere kan overgaan. Het begrip homotopie geeft een exacte betekenis aan het intuïtieve idee van continue vervorming. Zo'n vervorming wordt een homotopie genoemd. Het begrip wordt gebruikt in de definitie van homotopiegroepen en , en van belangrijke invarianten in de algebraïsche topologie.
rdf:langString
Eine Homotopieäquivalenz ist ein zentraler Begriff im mathematischen Teilgebiet Topologie: eine stetige Abbildung, die eine "stetige Umkehrabbildung bis auf Homotopie" besitzt. Zwei Räume heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz zwischen ihnen gibt. (Man sagt dann auch, die beiden Räume haben denselben Homotopietyp.) Homotopieäquivalenz definiert eine schwächere Äquivalenzrelation als Homöomorphismus. Topologie handelt zwar eigentlich von Eigenschaften, die unter Homöomorphismen invariant sind, viele topologische Invarianten sind aber auch invariant unter Homotopieäquivalenz.
rdf:langString
rdf:langString
Homotopieäquivalenz
rdf:langString
Homotopy equivalence
rdf:langString
Équivalence d'homotopie
rdf:langString
호모토피 동치
rdf:langString
Homotopie-equivalentie
xsd:integer
293691
xsd:integer
1068708265
rdf:langString
Eine Homotopieäquivalenz ist ein zentraler Begriff im mathematischen Teilgebiet Topologie: eine stetige Abbildung, die eine "stetige Umkehrabbildung bis auf Homotopie" besitzt. Zwei Räume heißen homotopieäquivalent, wenn es eine Homotopieäquivalenz zwischen ihnen gibt. (Man sagt dann auch, die beiden Räume haben denselben Homotopietyp.) Homotopieäquivalenz definiert eine schwächere Äquivalenzrelation als Homöomorphismus. Topologie handelt zwar eigentlich von Eigenschaften, die unter Homöomorphismen invariant sind, viele topologische Invarianten sind aber auch invariant unter Homotopieäquivalenz. Während man sich einen Homöomorphismus als Dehnen, Stauchen, Verbiegen, Verzerren, Verdrillen (aber nicht Zerschneiden) vorstellt, ist bei Homotopieäquivalenzen anschaulich gesprochen auch das Aufdicken und Zusammenquetschen zulässig.
rdf:langString
En mathématiques, une équivalence d'homotopie est une application admettant une réciproque à homotopie près. Autrement dit, deux applications sont des équivalences d'homotopie réciproques si leurs composées sont homotopes à l'identité sur leurs espaces de départ respectifs. Cette notion permet de définir le cadre de la théorie de l'homotopie. Dans le cadre de la topologie, une équivalence d'homotopie est un isomorphisme dans la catégorie (en). En particulier, toute équivalence d'homotopie est un quasi-isomorphisme, c'est-à-dire qu'elle induit un isomorphisme en homologie.
rdf:langString
대수적 위상수학에서 호모토피 동치(homotopy同値, 영어: homotopy equivalence)는 위상 공간의 분류의 하나이다. 이는 위상 동형보다 더 거칠며, 호모토피 군이나 특이 호몰로지와 같은 불변량을 보존하지만 차원과 같은 성질은 보존하지 않는다.
rdf:langString
In de topologie, die eigenschappen van ruimten bestudeert die bij continue vervorming ongewijzigd blijven, heten twee continue functies tussen een paar topologische ruimten homotopie-equivalent of homotoop-equivalent (Oudgrieks homos = identiek en topos = plaats) als de ene door "continue vervorming" in de andere kan overgaan. Het begrip homotopie geeft een exacte betekenis aan het intuïtieve idee van continue vervorming. Zo'n vervorming wordt een homotopie genoemd. Het begrip wordt gebruikt in de definitie van homotopiegroepen en , en van belangrijke invarianten in de algebraïsche topologie.
xsd:nonNegativeInteger
100