Homotopical algebra
http://dbpedia.org/resource/Homotopical_algebra an entity of type: WikicatTopologicalMethodsOfAlgebraicGeometry
数学において、ホモトピー代数学 (homotopical algebra) はホモロジー代数学の非アーベルな側面と、特別な場合としてアーベルな側面からもなる概念の集まりである。名前のホモトピーは次の事実に由来する。そのような一般化への共通のアプローチは、においてと同様、とくにの理論を経由する。 この主題は新しい基本的な研究によって最近多くの注目を浴びている。それは Voevodsky, Friedlander, Suslin 他の人たちによるものでその結果は体上のに対するである。Voevodsky はこの新しい代数的ホモトピー論をミルナー予想の証明に使い(これによって彼はフィールズ賞を受賞した)、後に M. Rost と協力してを完全に証明するのに使った。
rdf:langString
In mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra as well as possibly the abelian aspects as special cases. The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categories.
rdf:langString
rdf:langString
Homotopical algebra
rdf:langString
ホモトピー代数学
xsd:integer
1321050
xsd:integer
1082639271
rdf:langString
In mathematics, homotopical algebra is a collection of concepts comprising the nonabelian aspects of homological algebra as well as possibly the abelian aspects as special cases. The homotopical nomenclature stems from the fact that a common approach to such generalizations is via abstract homotopy theory, as in nonabelian algebraic topology, and in particular the theory of closed model categories. This subject has received much attention in recent years due to new foundational work of Vladimir Voevodsky, Eric Friedlander, Andrei Suslin, and others resulting in the A1 homotopy theory for quasiprojective varieties over a field. Voevodsky has used this new algebraic homotopy theory to prove the Milnor conjecture (for which he was awarded the Fields Medal) and later, in collaboration with Markus Rost, the full Bloch–Kato conjecture.
rdf:langString
数学において、ホモトピー代数学 (homotopical algebra) はホモロジー代数学の非アーベルな側面と、特別な場合としてアーベルな側面からもなる概念の集まりである。名前のホモトピーは次の事実に由来する。そのような一般化への共通のアプローチは、においてと同様、とくにの理論を経由する。 この主題は新しい基本的な研究によって最近多くの注目を浴びている。それは Voevodsky, Friedlander, Suslin 他の人たちによるものでその結果は体上のに対するである。Voevodsky はこの新しい代数的ホモトピー論をミルナー予想の証明に使い(これによって彼はフィールズ賞を受賞した)、後に M. Rost と協力してを完全に証明するのに使った。
xsd:nonNegativeInteger
2441