Hinge loss
http://dbpedia.org/resource/Hinge_loss an entity of type: WikicatSupportVectorMachines
在機器學習中,鉸鏈損失是一個用於訓練分類器的損失函數。鉸鏈損失被用於「最大間格分類」,因此非常適合用於支持向量機 (SVM)。对于一个预期输出 ,分类结果 的鉸鏈損失定義為 特別注意:以上式子的應該使用分類器的「原始輸出」,而非預測標籤。例如,在線性支持向量機當中,,其中 是超平面参数,是輸入資料點。 當和同號(意即分類器的輸出是正確的分類),且 时,鉸鏈損失 。但是,當它們異號(意即分類器的輸出是错误的分類)時, 隨 線性增長。套用相似的想法,如果 ,即使 和 同號(意即分類器的分類正確,但是間隔不足),此時仍然會有損失。
rdf:langString
In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as Note that should be the "raw" output of the classifier's decision function, not the predicted class label. For instance, in linear SVMs, , where are the parameters of the hyperplane and is the input variable(s).
rdf:langString
Em aprendizagem automática, a perda de articulação é uma função de perda usada para classificadores de treinamento. A perda de articulação é usada para , principalmente para máquinas de vetores de suporte (SVMs). Para uma saída pretendida t = ±1 e um escore de classificador y, a perda de articulação da previsão y é definida como: A em aprendizagem de máquina, a perda de articulação também é conhecida como "hinge loss" ou como "SVM loss".
rdf:langString
Завісні втрати (англ. hinge loss) у машинному навчанні — це функція втрат, яка використовується для навчання класифікаторів. Завісні втрати використовують для максимальної розділової класифікації, здебільшого для опорних векторних машин (ОВМ). Для поміченого виходу t = ±1 та оцінки класифікатора y, завісна втрата передбачення y визначається як Варто зауважити, що тут y є «сирим» значенням функції прийняття рішення у класифікаторі, а не міткою класу. Наприклад, в лінійних ОВМ , де є параметрами гіперплощини та — точка, яку потрібно класифікувати.
rdf:langString
rdf:langString
Hinge loss
rdf:langString
Perda de articulação
rdf:langString
Завісні втрати
rdf:langString
Hinge loss
xsd:integer
33100241
xsd:integer
1122589693
rdf:langString
In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). For an intended output t = ±1 and a classifier score y, the hinge loss of the prediction y is defined as Note that should be the "raw" output of the classifier's decision function, not the predicted class label. For instance, in linear SVMs, , where are the parameters of the hyperplane and is the input variable(s). When t and y have the same sign (meaning y predicts the right class) and , the hinge loss . When they have opposite signs, increases linearly with y, and similarly if , even if it has the same sign (correct prediction, but not by enough margin).
rdf:langString
Em aprendizagem automática, a perda de articulação é uma função de perda usada para classificadores de treinamento. A perda de articulação é usada para , principalmente para máquinas de vetores de suporte (SVMs). Para uma saída pretendida t = ±1 e um escore de classificador y, a perda de articulação da previsão y é definida como: Observe que y deve ser a saída "crua" da função de decisão do classificador, não o rótulo da classe prevista. Por exemplo, em SVMs lineares , onde são os parâmetros do hiperplano e é o ponto a ser classificado. Pode-se ver que quando t e y têm o mesmo sinal (que significa que y prediz a classe correta) e , a perda de articulação , mas quando eles têm sinal oposto, aumenta linearmente com y (erro unilateral). A em aprendizagem de máquina, a perda de articulação também é conhecida como "hinge loss" ou como "SVM loss".
rdf:langString
Завісні втрати (англ. hinge loss) у машинному навчанні — це функція втрат, яка використовується для навчання класифікаторів. Завісні втрати використовують для максимальної розділової класифікації, здебільшого для опорних векторних машин (ОВМ). Для поміченого виходу t = ±1 та оцінки класифікатора y, завісна втрата передбачення y визначається як Варто зауважити, що тут y є «сирим» значенням функції прийняття рішення у класифікаторі, а не міткою класу. Наприклад, в лінійних ОВМ , де є параметрами гіперплощини та — точка, яку потрібно класифікувати. Зрозуміло, що коли t та y мають однаковий знак (що означає, що y вказує на правильний клас) та , тоді завісні втрати , а коли вони мають різні знаки, то зростає лінійно від y (одностороння помилка). На рисунку пояснюється, чому завісні втрати дають кращу оцінку втрат ніж функція нуль-один.
rdf:langString
在機器學習中,鉸鏈損失是一個用於訓練分類器的損失函數。鉸鏈損失被用於「最大間格分類」,因此非常適合用於支持向量機 (SVM)。对于一个预期输出 ,分类结果 的鉸鏈損失定義為 特別注意:以上式子的應該使用分類器的「原始輸出」,而非預測標籤。例如,在線性支持向量機當中,,其中 是超平面参数,是輸入資料點。 當和同號(意即分類器的輸出是正確的分類),且 时,鉸鏈損失 。但是,當它們異號(意即分類器的輸出是错误的分類)時, 隨 線性增長。套用相似的想法,如果 ,即使 和 同號(意即分類器的分類正確,但是間隔不足),此時仍然會有損失。
xsd:nonNegativeInteger
7870