Hilbert metric

http://dbpedia.org/resource/Hilbert_metric

In der Geometrie sind Hilbert-Metriken gewisse Metriken auf beschränkten konvexen Teilmengen des euklidischen Raumes, die das Beltrami-Klein-Modell der hyperbolischen Geometrie verallgemeinern. rdf:langString
In mathematics, the Hilbert metric, also known as the Hilbert projective metric, is an explicitly defined distance function on a bounded convex subset of the n-dimensional Euclidean space Rn. It was introduced by David Hilbert as a generalization of Cayley's formula for the distance in the Cayley–Klein model of hyperbolic geometry, where the convex set is the n-dimensional open unit ball. Hilbert's metric has been applied to Perron–Frobenius theory and to constructing Gromov hyperbolic spaces. rdf:langString
rdf:langString Hilbert-Metrik
rdf:langString Hilbert metric
xsd:integer 22154619
xsd:integer 1077865147
rdf:langString David Hilbert
rdf:langString David
rdf:langString Hilbert
xsd:integer 1895
rdf:langString In der Geometrie sind Hilbert-Metriken gewisse Metriken auf beschränkten konvexen Teilmengen des euklidischen Raumes, die das Beltrami-Klein-Modell der hyperbolischen Geometrie verallgemeinern.
rdf:langString In mathematics, the Hilbert metric, also known as the Hilbert projective metric, is an explicitly defined distance function on a bounded convex subset of the n-dimensional Euclidean space Rn. It was introduced by David Hilbert as a generalization of Cayley's formula for the distance in the Cayley–Klein model of hyperbolic geometry, where the convex set is the n-dimensional open unit ball. Hilbert's metric has been applied to Perron–Frobenius theory and to constructing Gromov hyperbolic spaces.
xsd:nonNegativeInteger 8983

data from the linked data cloud