Hilbert cube

http://dbpedia.org/resource/Hilbert_cube an entity of type: Thing

Der Hilbertwürfel, auch Hilbertquader oder hilbertscher Fundamentalquader genannt, englisch Hilbert cube, ist ein nach dem Mathematiker David Hilbert benannter topologischer Raum, der den aus dem Anschauungsraum bekannten Würfel auf unendlich viele Dimensionen verallgemeinert. rdf:langString
In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below). rdf:langString
En matemáticas, el cubo de Hilbert (llamado así por David Hilbert) es un espacio topológico que proporciona un ejemplo instructivo de algunas ideas sobre topología. Además, muchos espacios topológicos interesantes se pueden incrustar en el cubo de Hilbert; es decir, se pueden ver como subespacios del cubo de Hilbert. rdf:langString
数学において、ヒルベルト立方体(英: Hilbert cube)は位相空間のひとつであり、トポロジーにおけるいくつかのアイデアの示唆的な例を与える。名称はダフィット・ヒルベルトに因む。多くの興味のある位相空間はヒルベルト立方体に埋め込むことができる。すなわちヒルベルト立方体の部分空間と見做すことができる(後述)。 rdf:langString
In de topologie, een deelgebied van de wiskunde, is de hilbert-kubus,een topologische ruimte, dat een leerzame illustratie geeft van een aantal ideeën in de topologie. Ook kunnen vele interessante topologische ruimten worden ingebed in de hilbert-kubus; dat wil zeggen dat zij kunnen worden gezien als deelruimten van de hilbert-kubus (zie hieronder). De hilbert-kubus is genoemd naar David Hilbert, rdf:langString
Гильбертов кирпич (или гильбертов куб) — топологическое пространство, гомеоморфное произведению счётного числа копий отрезков (с топологией произведения). rdf:langString
У математиці куб Гільберта названий на честь Девіда Гільберта, — це топологічний простір, який служить повчальним прикладом деяких ідей у топології.Крім того, багато цікавих топологічних просторів можна вкласти в куб Гільберта; тобто їх можна розглядати як підпростори куба Гільберта (див. нижче). rdf:langString
En topologie, on appelle cube de Hilbert l'espace produit muni de la topologie produit, autrement dit : l'espace des suites à valeurs dans [0, 1], muni de la topologie de la convergence simple. D'après le théorème de Tykhonov, c'est un espace compact. Il est homéomorphe au sous-espace suivant de ℓ2, pour tous : . Il est donc métrisable et par conséquent (puisqu'il est compact), séparable et possède la propriété suivante : Tout espace métrisable et séparable est homéomorphe à un sous-espace de K. rdf:langString
rdf:langString Hilbertwürfel
rdf:langString Cubo de Hilbert
rdf:langString Hilbert cube
rdf:langString Cube de Hilbert
rdf:langString ヒルベルト立方体
rdf:langString Hilbert-kubus
rdf:langString Гильбертов кирпич
rdf:langString Куб Гільберта
xsd:integer 216389
xsd:integer 1069726732
rdf:langString Der Hilbertwürfel, auch Hilbertquader oder hilbertscher Fundamentalquader genannt, englisch Hilbert cube, ist ein nach dem Mathematiker David Hilbert benannter topologischer Raum, der den aus dem Anschauungsraum bekannten Würfel auf unendlich viele Dimensionen verallgemeinert.
rdf:langString In mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).
rdf:langString En topologie, on appelle cube de Hilbert l'espace produit muni de la topologie produit, autrement dit : l'espace des suites à valeurs dans [0, 1], muni de la topologie de la convergence simple. D'après le théorème de Tykhonov, c'est un espace compact. Il est homéomorphe au sous-espace suivant de ℓ2, pour tous : . Il est donc métrisable et par conséquent (puisqu'il est compact), séparable et possède la propriété suivante : Tout espace métrisable et séparable est homéomorphe à un sous-espace de K. Cela fournit en particulier un moyen commode pour compactifier les espaces métrisables séparables, et aussi un critère pour les classifier selon leur complexité ; par exemple un espace est polonais si et seulement s'il est homéomorphe à l'intersection d'une suite d'ouverts de K. On en déduit aussi que tout espace mesurable dénombrablement engendré et séparé est isomorphe à une partie de K munie de la tribu induite par la tribu borélienne de K.
rdf:langString En matemáticas, el cubo de Hilbert (llamado así por David Hilbert) es un espacio topológico que proporciona un ejemplo instructivo de algunas ideas sobre topología. Además, muchos espacios topológicos interesantes se pueden incrustar en el cubo de Hilbert; es decir, se pueden ver como subespacios del cubo de Hilbert.
rdf:langString 数学において、ヒルベルト立方体(英: Hilbert cube)は位相空間のひとつであり、トポロジーにおけるいくつかのアイデアの示唆的な例を与える。名称はダフィット・ヒルベルトに因む。多くの興味のある位相空間はヒルベルト立方体に埋め込むことができる。すなわちヒルベルト立方体の部分空間と見做すことができる(後述)。
rdf:langString In de topologie, een deelgebied van de wiskunde, is de hilbert-kubus,een topologische ruimte, dat een leerzame illustratie geeft van een aantal ideeën in de topologie. Ook kunnen vele interessante topologische ruimten worden ingebed in de hilbert-kubus; dat wil zeggen dat zij kunnen worden gezien als deelruimten van de hilbert-kubus (zie hieronder). De hilbert-kubus is genoemd naar David Hilbert,
rdf:langString Гильбертов кирпич (или гильбертов куб) — топологическое пространство, гомеоморфное произведению счётного числа копий отрезков (с топологией произведения).
rdf:langString У математиці куб Гільберта названий на честь Девіда Гільберта, — це топологічний простір, який служить повчальним прикладом деяких ідей у топології.Крім того, багато цікавих топологічних просторів можна вкласти в куб Гільберта; тобто їх можна розглядати як підпростори куба Гільберта (див. нижче).
xsd:nonNegativeInteger 5336

data from the linked data cloud