Head direction cell
http://dbpedia.org/resource/Head_direction_cell
Head direction (HD) cells are neurons found in a number of brain regions that increase their firing rates above baseline levels only when the animal's head points in a specific direction. They have been reported in rats, monkeys, mice, chinchillas and bats, but are thought to be common to all mammals, perhaps all vertebrates and perhaps even some invertebrates, and to underlie the "sense of direction". When the animal's head is facing in the cell's "preferred firing direction" these neurons fire at a steady rate (i.e., they do not show adaptation), but firing decreases back to baseline rates as the animal's head turns away from the preferred direction (usually about 45° away from this direction).
rdf:langString
Нейроны направления головы (англ. head direction cells) — особые нейроны в головном мозге, активирующиеся в соответствии с направлением головы животного. Эти нейроны разряжаются с определённой частотой, когда голова животного ориентирована в каком-либо направлении, и перестают разряжаться, когда направление головы изменяется. Систему этих нейронов можно считать «внутренним компасом» мозга, при любом направлении головы активна некоторая часть этих нейронов. Однако эта система никак не связана с чувствительностью к магнитному полю Земли, на неё влияют в основном вестибулярные сигналы. Вместе с нейронами места, нейронами решётки, и нейронами скорости нейроны направления головы входят в мозговую «навигационную систему», которая обеспечивает пространственную ориентацию животного. Большинство н
rdf:langString
rdf:langString
Head direction cell
rdf:langString
Нейроны направления головы
xsd:integer
2898964
xsd:integer
1093018092
rdf:langString
November 2019
rdf:langString
similar to postbus
rdf:langString
Head direction (HD) cells are neurons found in a number of brain regions that increase their firing rates above baseline levels only when the animal's head points in a specific direction. They have been reported in rats, monkeys, mice, chinchillas and bats, but are thought to be common to all mammals, perhaps all vertebrates and perhaps even some invertebrates, and to underlie the "sense of direction". When the animal's head is facing in the cell's "preferred firing direction" these neurons fire at a steady rate (i.e., they do not show adaptation), but firing decreases back to baseline rates as the animal's head turns away from the preferred direction (usually about 45° away from this direction). HD cells are found in many brain areas, including the cortical regions of postsubiculum (also known as the dorsal presubiculum), retrosplenial cortex, and entorhinal cortex, and subcortical regions including the thalamus (the anterior dorsal and the lateral dorsal thalamic nuclei), lateral mammillary nucleus, dorsal tegmental nucleus and striatum. It is thought that the cortical head direction cells process information about the environment, while the subcortical ones process information about angular head movements. A striking characteristic of HD cells is that in most brain regions they maintain the same relative preferred firing directions, even if the animal is moved to a different room, or if landmarks are moved. This has suggested that the cells interact so as to maintain a unitary stable heading signal (see "Theoretical models"). Recently, however, a subpopulation of HD neurons has been found in the dysgranular part of retrosplenial cortex that can operate independently of the rest of the network, and which seems more responsive to environmental cues. The system is related to the place cell system, located in the hippocampus, which is mostly orientation-invariant and location-specific, whereas HD cells are mostly orientation-specific and location-invariant. However, HD cells do not require a functional hippocampus to express their head direction specificity. They depend on the vestibular system, and the firing is independent of the position of the animal's body relative to its head. Some HD cells exhibit anticipatory behaviour: the best match between HD activity and the animal's actual head direction has been found to be up to 95 ms in future. That is, activity of head direction cells predicts, 95 ms in advance, what the animal's head direction will be. This possibly reflects inputs from the motor system ("motor efference copy") preparing the network for an impending head turn. HD cells continue to fire in an organized manner during sleep, as if animals were awake. However, instead of always pointing toward the same direction—the animals are asleep and thus immobile—the neuronal "compass needle" moves constantly. In particular, during rapid eye movement sleep, a brain state rich in dreaming activity in humans and whose electrical activity is virtually indistinguishable from the waking brain, this directional signal moves as if the animal is awake: that is, HD neurons are sequentially activated, and the individual neurons representing a common direction during wake are still active, or silent, at the same time.
rdf:langString
Нейроны направления головы (англ. head direction cells) — особые нейроны в головном мозге, активирующиеся в соответствии с направлением головы животного. Эти нейроны разряжаются с определённой частотой, когда голова животного ориентирована в каком-либо направлении, и перестают разряжаться, когда направление головы изменяется. Систему этих нейронов можно считать «внутренним компасом» мозга, при любом направлении головы активна некоторая часть этих нейронов. Однако эта система никак не связана с чувствительностью к магнитному полю Земли, на неё влияют в основном вестибулярные сигналы. Вместе с нейронами места, нейронами решётки, и нейронами скорости нейроны направления головы входят в мозговую «навигационную систему», которая обеспечивает пространственную ориентацию животного. Большинство нейронов направления головы находится в дорсальном пресубикулуме и энторинальной коре, однако они обнаружены и за пределами гиппокамповой формации. Они были открыты в 1980-е годы американским нейрофизиологом . Работа мозговой навигационной системы, частью которой является система отслеживания направления головы, сейчас активно изучается. Установлено, что нейроны направления головы активны не только у бодрствующих, но и у спящих животных, при этом паттерны активности нейронов во время сна и во время бодрствования очень схожи. Поэтому считается, что нейроны системы отслеживания направления головы обладают внутренними механизмами самоорганизации, то есть эта система способна отслеживать направление головы в отсутствие внешних визуальных стимулов. Внешние стимулы служат для коррекции состояния этой системы при соотнесении её информации с окружающей обстановкой.
xsd:nonNegativeInteger
24817