Grothendieck space

http://dbpedia.org/resource/Grothendieck_space an entity of type: Work

In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space in which every sequence in its continuous dual space that converges in the weak-* topology (also known as the topology of pointwise convergence) will also converge when is endowed with which is the weak topology induced on by its bidual. Said differently, a Grothendieck space is a Banach space for which a sequence in its dual space converges weak-* if and only if it converges weakly. rdf:langString
Przestrzeń Grothendiecka (przestrzeń Banacha o własności Grothendiecka) – przestrzeń Banacha o tej własności, że każdy ciąg punktów jej przestrzeni sprzężonej, który jest zbieżny w sensie *-słabej topologii jest również zbieżny w sensie słabej topologii. Równoważnie, przestrzeń Banacha jest przestrzenią Grothendiecka, gdy dla każdego ciągu funkcjonałów liniowych i ciągłych na który spełnia warunek zachodzi również rdf:langString
Inom matematiken är ett Grothendieckrum, uppkallat efter Alexander Grothendieck, ett Banachrum X så att för varje separabelt Banachrum Y är varje begränsad linjär operator från X till Y , d.v.s. bilden av en begränsad delmängd av X isär en svagt kompakt delmängd av Y. Varje reflexivt Banachrum är ett Grothendieckrum. Omvänt är varje separabelt Grothendieckrum X reflexivt, eftersom identiteten från X till X är svagt kompakt i detta fall. rdf:langString
rdf:langString Grothendieck space
rdf:langString Przestrzeń Grothendiecka
rdf:langString Grothendieckrum
xsd:integer 17893372
xsd:integer 1082825141
rdf:langString S.-Y.
rdf:langString Shaw
rdf:langString Grothendieck space
rdf:langString In mathematics, a Grothendieck space, named after Alexander Grothendieck, is a Banach space in which every sequence in its continuous dual space that converges in the weak-* topology (also known as the topology of pointwise convergence) will also converge when is endowed with which is the weak topology induced on by its bidual. Said differently, a Grothendieck space is a Banach space for which a sequence in its dual space converges weak-* if and only if it converges weakly.
rdf:langString Inom matematiken är ett Grothendieckrum, uppkallat efter Alexander Grothendieck, ett Banachrum X så att för varje separabelt Banachrum Y är varje begränsad linjär operator från X till Y , d.v.s. bilden av en begränsad delmängd av X isär en svagt kompakt delmängd av Y. Varje reflexivt Banachrum är ett Grothendieckrum. Omvänt är varje separabelt Grothendieckrum X reflexivt, eftersom identiteten från X till X är svagt kompakt i detta fall. Exempel på Grothendieckrum som inte är reflexiva är rummet C(K) av alla kontinuerliga funktioner på ett kompakt rum K och rummet L∞(μ) för ett μ (ett Stonskt kompakt rum är ett kompakt Hausdorffrum där slutna höljet av varje öppen mängd är öppet).
rdf:langString Przestrzeń Grothendiecka (przestrzeń Banacha o własności Grothendiecka) – przestrzeń Banacha o tej własności, że każdy ciąg punktów jej przestrzeni sprzężonej, który jest zbieżny w sensie *-słabej topologii jest również zbieżny w sensie słabej topologii. Równoważnie, przestrzeń Banacha jest przestrzenią Grothendiecka, gdy dla każdego ciągu funkcjonałów liniowych i ciągłych na który spełnia warunek zachodzi również Nazwa pojęcia pochodzi od A. Grothendiecka, który udowodnił, że przestrzenie Banacha funkcji ciągłych na ekstremalnie niespójnych przestrzeniach zwartych Hausdorffa wyposażone w normę supremum, są przestrzeniami Grothendiecka (sam Grothendieck nie nazywał ich w taki sposób). W szczególności, przestrzeń jest więc przestrzenią Grothendiecka ( oznacza uzwarcenie Čecha-Stone’a zbioru liczb naturalnych z topologią dyskretną). Ogólniej, każda przestrzeń Banacha postaci jest przestrzenią Grothendiecka.
xsd:nonNegativeInteger 3324

data from the linked data cloud