Glass microsphere

http://dbpedia.org/resource/Glass_microsphere an entity of type: WikicatMaterials

Las microesferas de vidrio son un producto usado en la señalización vial de cara a mejorar la visibilidad en las carreteras cuando las condiciones de luminosidad no son suficientes. Las microesferas actúan como pequeños ojos de gato que reflejan la luz en la dirección de la que proviene dando mejor visibilidad a la carretera.También tiene una amplia gama de aplicaciones como medio abrasivo suave, se usa como granalla o arena, su acción es muy delicada dejando terminaciones mate en metales. rdf:langString
Glass microspheres are microscopic spheres of glass manufactured for a wide variety of uses in research, medicine, consumer goods and various industries. Glass microspheres are usually between 1 and 1000 micrometers in diameter, although the sizes can range from 100 nanometers to 5 millimeters in diameter. Hollow glass microspheres, sometimes termed microballoons or glass bubbles, have diameters ranging from 10 to 300 micrometers. Microspheres made of high quality optical glass, can be produced for research on the field of optical resonators or cavities. rdf:langString
rdf:langString Microesfera de vidrio
rdf:langString Glass microsphere
xsd:integer 1539049
xsd:integer 953602495
rdf:langString Las microesferas de vidrio son un producto usado en la señalización vial de cara a mejorar la visibilidad en las carreteras cuando las condiciones de luminosidad no son suficientes. Las microesferas actúan como pequeños ojos de gato que reflejan la luz en la dirección de la que proviene dando mejor visibilidad a la carretera.También tiene una amplia gama de aplicaciones como medio abrasivo suave, se usa como granalla o arena, su acción es muy delicada dejando terminaciones mate en metales.
rdf:langString Glass microspheres are microscopic spheres of glass manufactured for a wide variety of uses in research, medicine, consumer goods and various industries. Glass microspheres are usually between 1 and 1000 micrometers in diameter, although the sizes can range from 100 nanometers to 5 millimeters in diameter. Hollow glass microspheres, sometimes termed microballoons or glass bubbles, have diameters ranging from 10 to 300 micrometers. Hollow spheres are used as a lightweight filler in composite materials such as syntactic foam and lightweight concrete. Microballoons give syntactic foam its light weight, low thermal conductivity, and a resistance to compressive stress that far exceeds that of other foams. These properties are exploited in the hulls of submersibles and deep-sea oil drilling equipment, where other types of foam would implode. Hollow spheres of other materials create syntactic foams with different properties: ceramic balloons e.g. can make a light syntactic aluminium foam. Hollow spheres also have uses ranging from storage and slow release of pharmaceuticals and radioactive tracers to research in controlled storage and release of hydrogen. Microspheres are also used in composites to fill polymer resins for specific characteristics such as weight, sandability and sealing surfaces. When making surfboards for example, shapers seal the EPS foam blanks with epoxy and microballoons to create an impermeable and easily sanded surface upon which fiberglass laminates are applied. Glass microspheres can be made by heating tiny droplets of dissolved water glass in a process known as ultrasonic spray pyrolysis (USP), and properties can be improved somewhat by using a chemical treatment to remove some of the sodium. Sodium depletion has also allowed hollow glass microspheres to be used in chemically sensitive resin systems, such as long pot life epoxies or non-blown polyurethane composites Additional functionalities, such as silane coatings, are commonly added to the surface of hollow glass microspheres to increase the matrix/microspheres interfacial strength (the common failure point when stressed in a tensile manner). Microspheres made of high quality optical glass, can be produced for research on the field of optical resonators or cavities. Glass microspheres are also produced as waste product in coal-fired power stations. In this case the product would be generally termed "cenosphere" and carry an aluminosilicate chemistry (as opposed to the sodium silica chemistry of engineered spheres). Small amounts of silica in the coal are melted and as they rise up the chimneystack, expand and form small hollow spheres. These spheres are collected together with the ash, which is pumped in a water mixture to the resident ash dam. Some of the particles do not become hollow and sink in the ash dams, while the hollow ones float on the surface of the dams. They become a nuisance, especially when they dry, as they become airborne and blow over into surrounding areas.
xsd:nonNegativeInteger 8694

data from the linked data cloud