Generalized polygon
http://dbpedia.org/resource/Generalized_polygon an entity of type: Building
In mathematics, a generalized polygon is an incidence structure introduced by Jacques Tits in 1959. Generalized n-gons encompass as special cases projective planes (generalized triangles, n = 3) and generalized quadrangles (n = 4). Many generalized polygons arise from groups of Lie type, but there are also exotic ones that cannot be obtained in this way. Generalized polygons satisfying a technical condition known as the Moufang property have been completely classified by Tits and Weiss. Every generalized n-gon with n even is also a near polygon.
rdf:langString
数学の一分野、組合せ論における一般化された多角形(いっぱんかされたたかっけい、英: generalized polygon)は、ジャック・ティッツによって導入されたある種の接続構造である。一般化された多角形は、その特別の場合として、射影平面(n = 3; 一般化三角形)、 (n = 4) の概念を含む(これらは、公理的な射影空間およびの中でもっとも複雑な種類のものである)。一般化多角形の多くはから生じるが、そのような方法からは得られない異種 (exotic) の一般化多角形も存在する。一般化多角形はムーファン性(に因む)と呼ばれる技巧的な条件を満足し、ティッツとワイスによる完全な分類が知られている。
rdf:langString
결합 구조 이론에서, 일반화 다각형(一般化多角形, 영어: generalized polygon)은 특정 크기 이하의 다각형을 갖지 않는 결합 구조이다. 사영 평면과 다각형의 공통적인 일반화이다.
rdf:langString
In de wiskunde is een gegeneraliseerde veelhoek een incidentiemeetstructuur geïntroduceerd door Jacques Tits in 1959. Gegeneraliseerde -hoeken bevatten als speciale gevallen projectieve vlakken (gegeneraliseerde driehoeken) en polaire ruimten van rang 2 (gegeneraliseerde vierhoeken).
rdf:langString
Обобщённый многоугольник — это структура инцидентности, предложенная Жаком Титсом в 1959 году. Обобщённые n-угольники вмещают в качестве частных случаев проективные плоскости (обобщённые треугольники, n=3) и обобщённые четырёхугольники (n=4). Многие обобщённые многоугольники получаются из , но существуют некоторые экзотические обобщённые многоугольники, которые таким способом не получаются. Обобщённые многоугольники, удовлетворяющие условию, известному как свойство Муфанга, полностью классифицированы Титсом и Вайсом. Любой обобщённый n-угольник с чётным n является также почти многоугольником.
rdf:langString
Узагальнений многокутник — це структура інцидентності, яку 1959 року запропонував . Узагальнені n-кутники вміщують як часткові випадки проєктивні площини (узагальнені трикутники, n=3) і узагальнені чотирикутники (n=4). Багато узагальнених многокутників виходять з груп типу Лі, але існують деякі екзотичні узагальнені многокутники, які таким способом не виходять. Узагальнені многокутники, що задовольняють умові, відомій як властивість Муфанга, повністю класифікували Тітс і Вайс. Будь-який узагальнений n-кутник з парним n є також майже многокутником.
rdf:langString
rdf:langString
Generalized polygon
rdf:langString
일반화 다각형
rdf:langString
一般化多角形
rdf:langString
Gegeneraliseerde veelhoek
rdf:langString
Обобщённый многоугольник
rdf:langString
Узагальнений многокутник
xsd:integer
4027364
xsd:integer
1060802445
rdf:langString
In mathematics, a generalized polygon is an incidence structure introduced by Jacques Tits in 1959. Generalized n-gons encompass as special cases projective planes (generalized triangles, n = 3) and generalized quadrangles (n = 4). Many generalized polygons arise from groups of Lie type, but there are also exotic ones that cannot be obtained in this way. Generalized polygons satisfying a technical condition known as the Moufang property have been completely classified by Tits and Weiss. Every generalized n-gon with n even is also a near polygon.
rdf:langString
数学の一分野、組合せ論における一般化された多角形(いっぱんかされたたかっけい、英: generalized polygon)は、ジャック・ティッツによって導入されたある種の接続構造である。一般化された多角形は、その特別の場合として、射影平面(n = 3; 一般化三角形)、 (n = 4) の概念を含む(これらは、公理的な射影空間およびの中でもっとも複雑な種類のものである)。一般化多角形の多くはから生じるが、そのような方法からは得られない異種 (exotic) の一般化多角形も存在する。一般化多角形はムーファン性(に因む)と呼ばれる技巧的な条件を満足し、ティッツとワイスによる完全な分類が知られている。
rdf:langString
결합 구조 이론에서, 일반화 다각형(一般化多角形, 영어: generalized polygon)은 특정 크기 이하의 다각형을 갖지 않는 결합 구조이다. 사영 평면과 다각형의 공통적인 일반화이다.
rdf:langString
In de wiskunde is een gegeneraliseerde veelhoek een incidentiemeetstructuur geïntroduceerd door Jacques Tits in 1959. Gegeneraliseerde -hoeken bevatten als speciale gevallen projectieve vlakken (gegeneraliseerde driehoeken) en polaire ruimten van rang 2 (gegeneraliseerde vierhoeken).
rdf:langString
Обобщённый многоугольник — это структура инцидентности, предложенная Жаком Титсом в 1959 году. Обобщённые n-угольники вмещают в качестве частных случаев проективные плоскости (обобщённые треугольники, n=3) и обобщённые четырёхугольники (n=4). Многие обобщённые многоугольники получаются из , но существуют некоторые экзотические обобщённые многоугольники, которые таким способом не получаются. Обобщённые многоугольники, удовлетворяющие условию, известному как свойство Муфанга, полностью классифицированы Титсом и Вайсом. Любой обобщённый n-угольник с чётным n является также почти многоугольником.
rdf:langString
Узагальнений многокутник — це структура інцидентності, яку 1959 року запропонував . Узагальнені n-кутники вміщують як часткові випадки проєктивні площини (узагальнені трикутники, n=3) і узагальнені чотирикутники (n=4). Багато узагальнених многокутників виходять з груп типу Лі, але існують деякі екзотичні узагальнені многокутники, які таким способом не виходять. Узагальнені многокутники, що задовольняють умові, відомій як властивість Муфанга, повністю класифікували Тітс і Вайс. Будь-який узагальнений n-кутник з парним n є також майже многокутником.
xsd:nonNegativeInteger
11248