Generalized least squares

http://dbpedia.org/resource/Generalized_least_squares an entity of type: Thing

En estadística, los mínimos cuadrados generalizados (en inglés, generalized least squares (GLS)) es una técnica para la estimación de los parámetros desconocidos en un modelo de regresión lineal. El GLS se aplica cuando las varianzas de las observaciones son desiguales, es decir, cuando se presenta heterocedasticidad, o cuando existe un cierto grado de correlación entre las observaciones.​ En estos casos los mínimos cuadrados ordinarios pueden ser estadísticamente ineficaces o incluso dar inferencias engañosas.​ rdf:langString
In statistics, generalized least squares (GLS) is a technique for estimating the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in a regression model. In these cases, ordinary least squares and weighted least squares can be statistically inefficient, or even give misleading inferences. GLS was first described by Alexander Aitken in 1936. rdf:langString
Il metodo dei minimi quadrati generalizzati di Aitken consente la stima di un modello lineare, sotto ipotesi più generali di quelle del modello classico di regressione lineare multivariata. rdf:langString
Em Econometria, o método dos mínimos quadrados generalizados (GLS, na sigla em inglês) é uma técnica para estimar parâmetros desconhecidos num modelo de regressão linear. O método GLS é aplicado quando a variância dos erros não é a mesma (heteroscedasticidade), ou quando há certa correlação entre os resíduos. Nestes casos, o método dos mínimos quadrados ordinários pode ser estatisticamente ineficiente ou mesmo viesado. O GLS foi inicialmente descrito por Alexander Aitken em 1934. rdf:langString
In der Statistik ist die Verallgemeinerte Kleinste-Quadrate-Schätzung (kurz VKQ-Schätzung), verallgemeinerte Methode der kleinsten Quadrate, kurz VMKQ (englisch generalized least squares, kurz GLS) eine Prozedur, um unbekannte wahre Regressionsparameter in einer linearen Regressionsgleichung, unter problematischen Voraussetzungen (vorliegen von Autokorrelation und Heteroskedastizität), effizient zu schätzen. Die VKQ-Methode kann benutzt werden, um bei einem zielführend eine lineare Regression durchzuführen. Eine verallgemeinerte Störgrößenstruktur liegt vor, wenn ein bestimmter Grad an Korrelation zwischen den Residuen und eine nicht konstante Störgrößenvarianz zulässig sind. In diesen Fällen können die gewöhnliche Kleinste-Quadrate-Schätzung und die gewichtete Kleinste-Quadrate-Schätzung rdf:langString
Обобщённый метод наименьших квадратов (ОМНК, GLS — англ. Generalized Least Squares) — метод оценки параметров регрессионных моделей, являющийся обобщением классического метода наименьших квадратов. Обобщённый метод наименьших квадратов сводится к минимизации «обобщённой суммы квадратов» остатков регрессии — , где — вектор остатков, — симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем обобщённого, когда весовая матрица пропорциональна единичной. rdf:langString
rdf:langString Verallgemeinerte Kleinste-Quadrate-Schätzung
rdf:langString Mínimos cuadrados generalizados
rdf:langString Generalized least squares
rdf:langString Minimi quadrati generalizzati
rdf:langString Mínimos quadrados generalizados
rdf:langString Обобщённый метод наименьших квадратов
xsd:integer 4504135
xsd:integer 1116951945
rdf:langString In der Statistik ist die Verallgemeinerte Kleinste-Quadrate-Schätzung (kurz VKQ-Schätzung), verallgemeinerte Methode der kleinsten Quadrate, kurz VMKQ (englisch generalized least squares, kurz GLS) eine Prozedur, um unbekannte wahre Regressionsparameter in einer linearen Regressionsgleichung, unter problematischen Voraussetzungen (vorliegen von Autokorrelation und Heteroskedastizität), effizient zu schätzen. Die VKQ-Methode kann benutzt werden, um bei einem zielführend eine lineare Regression durchzuführen. Eine verallgemeinerte Störgrößenstruktur liegt vor, wenn ein bestimmter Grad an Korrelation zwischen den Residuen und eine nicht konstante Störgrößenvarianz zulässig sind. In diesen Fällen können die gewöhnliche Kleinste-Quadrate-Schätzung und die gewichtete Kleinste-Quadrate-Schätzung statistisch ineffizient sein oder sogar zu falschen Resultaten der statistischen Inferenz führen. Aus diesem Grund wird, um valide Resultate der statistischen Inferenz zu erhalten, eine Transformation des klassischen linearen Modells durchgeführt, durch welche die benötigten Annahmen für die statistische Inferenz weiterhin erfüllt sind. Die VKQ-Methode minimiert im Gegensatz zur gewöhnlichen Methode der kleinsten Quadrate eine gewichtete Residuenquadratsumme. Sie wurde von Alexander Aitken entwickelt und 1934 veröffentlicht und wird daher auch Aitken-Schätzung genannt.
rdf:langString En estadística, los mínimos cuadrados generalizados (en inglés, generalized least squares (GLS)) es una técnica para la estimación de los parámetros desconocidos en un modelo de regresión lineal. El GLS se aplica cuando las varianzas de las observaciones son desiguales, es decir, cuando se presenta heterocedasticidad, o cuando existe un cierto grado de correlación entre las observaciones.​ En estos casos los mínimos cuadrados ordinarios pueden ser estadísticamente ineficaces o incluso dar inferencias engañosas.​
rdf:langString In statistics, generalized least squares (GLS) is a technique for estimating the unknown parameters in a linear regression model when there is a certain degree of correlation between the residuals in a regression model. In these cases, ordinary least squares and weighted least squares can be statistically inefficient, or even give misleading inferences. GLS was first described by Alexander Aitken in 1936.
rdf:langString Il metodo dei minimi quadrati generalizzati di Aitken consente la stima di un modello lineare, sotto ipotesi più generali di quelle del modello classico di regressione lineare multivariata.
rdf:langString Обобщённый метод наименьших квадратов (ОМНК, GLS — англ. Generalized Least Squares) — метод оценки параметров регрессионных моделей, являющийся обобщением классического метода наименьших квадратов. Обобщённый метод наименьших квадратов сводится к минимизации «обобщённой суммы квадратов» остатков регрессии — , где — вектор остатков, — симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем обобщённого, когда весовая матрица пропорциональна единичной. Необходимо отметить, что обычно обобщённым методом наименьших квадратов называют частный случай, когда в качестве весовой матрицы используется матрица, обратная ковариационной матрице случайных ошибок модели.
rdf:langString Em Econometria, o método dos mínimos quadrados generalizados (GLS, na sigla em inglês) é uma técnica para estimar parâmetros desconhecidos num modelo de regressão linear. O método GLS é aplicado quando a variância dos erros não é a mesma (heteroscedasticidade), ou quando há certa correlação entre os resíduos. Nestes casos, o método dos mínimos quadrados ordinários pode ser estatisticamente ineficiente ou mesmo viesado. O GLS foi inicialmente descrito por Alexander Aitken em 1934.
xsd:nonNegativeInteger 15502

data from the linked data cloud