Frame bundle

http://dbpedia.org/resource/Frame_bundle an entity of type: Thing

In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle. rdf:langString
위상수학에서 틀다발(영어: frame bundle)은 임의의 벡터 다발에 대응되는, 일반 선형군을 올로 삼는 특별한 주다발이다.:§4.3, 121–131 벡터 다발의 틀다발은 원래 벡터 다발의 위상수학적 정보를 담고 있으며, 원래 벡터 다발은 틀다발의 연관 벡터 다발로서 재구성된다. rdf:langString
У математиці, розшаруванням реперів називається головне розшарування F(E) асоційоване із деяким векторним розшаруванням E. Шаром над точкою x у F(E) є множина всіх впорядкованих базисів, або реперів векторного простору Ex. Загальна лінійна група натурально діє на F(E) заміною базисів. Із цією дією розшарування реперів є головним GL(k, R)-розшаруванням (де k є рангом E). Для гладкого многовиду розшарування реперів розглядають в основному для дотичного розшарування. Воно також називається дотичним розшаруванням реперів. rdf:langString
数学中,标架丛(Frame bundle)是一个与任何向量丛 E 相伴的主丛。F(E) 在一点 x 的纤维是 Ex 的所有有序基或曰标架。一般线性群通过基变更自然作用在 F(E) 上,给出标架丛一个主 GLk(R)-丛结构,这里 k 是 E 的秩。 一个光滑流形的标架丛是与其切丛相伴的丛。因此它有经常称为切标架丛(tangent frame bundle)。 rdf:langString
In der Mathematik im Teilgebiet der Differentialgeometrie ist ein Rahmenbündel ein Hauptfaserbündel, das zu einem Vektorbündel zugeordnet ist. Grob gesagt entspricht das Rahmenbündel der Menge aller Basen des zugeordneten Vektorbündeln. Die Elemente eines Rahmenbündels werden als Rahmen bezeichnet. Von besonderem Interesse ist das Rahmenbündel, das dem Tangentialbündel einer glatten Mannigfaltigkeit zugeordnet wird. rdf:langString
En géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. rdf:langString
rdf:langString Fibrat de marc
rdf:langString Rahmenbündel
rdf:langString Fibré des repères
rdf:langString Frame bundle
rdf:langString 틀다발
rdf:langString Розшарування реперів
rdf:langString 标架丛
xsd:integer 366550
xsd:integer 1068157656
rdf:langString In der Mathematik im Teilgebiet der Differentialgeometrie ist ein Rahmenbündel ein Hauptfaserbündel, das zu einem Vektorbündel zugeordnet ist. Grob gesagt entspricht das Rahmenbündel der Menge aller Basen des zugeordneten Vektorbündeln. Die Elemente eines Rahmenbündels werden als Rahmen bezeichnet. Von besonderem Interesse ist das Rahmenbündel, das dem Tangentialbündel einer glatten Mannigfaltigkeit zugeordnet wird. Präziser ausgedrückt ist die Faser eines Rahmenbündels die Menge aller geordneten Basen. Somit operiert die allgemeine lineare Gruppe auf einem Rahmenbündel mittels Basiswechsel, wodurch das Rahmenbündel die Struktur eines -Hauptfaserbündels erhält. Auf einem Prähilbertraum, also einem Vektorraum mit Skalarprodukt, ist der Begriff der Orthonormalbasis definiert. Entsprechend kann man einem Vektorbündel mit einer ein orthonormales Rahmenbündel zuordnen, die Elemente des Raums heißen dann orthonormale Rahmen.
rdf:langString In mathematics, a frame bundle is a principal fiber bundle F(E) associated to any vector bundle E. The fiber of F(E) over a point x is the set of all ordered bases, or frames, for Ex. The general linear group acts naturally on F(E) via a change of basis, giving the frame bundle the structure of a principal GL(k, R)-bundle (where k is the rank of E). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle.
rdf:langString En géométrie différentielle, un fibré des repères est un certain type de fibré principal qui correspond à un fibré vectoriel sur une variété différentielle. Les points du fibré des repères sont les repères linéaires des fibres du fibré vectoriel correspondant. L'exemple le plus commun de fibré des repères est le fibré des repères tangents correspondant au fibré tangent d'une variété différentielle. Le fibré des repères tangents revient souvent en géométrie différentielle puisque, par , il sert à définir plusieurs autres fibrés des repères dont le fibré des repères orthonormaux d'une variété riemannienne ou encore le fibré des repères symplectiques d'une variété symplectique. La notion de fibré des repères joue un rôle important en physique théorique dont en théorie de jauge, en quantification géométrique ainsi qu'en relativité générale dans sa formulation en où des champs de repères non holonomiques sont considérés. Le fibré des repères joue aussi un rôle important en physique quantique où son double recouvrement sert à définir la notion de spin 1/2 des fermions. Ensuite, le fibré des repères joue aussi un rôle dans les théories du tout et en théorie de Kaluza-Klein où les groupes structurels en jeu, e.g. , peuvent être interprétés comme sous-groupes d'un pour n assez grand. Enfin, l'importance de la notion de fibré des repères est que, contrairement à la notion plus générale de fibré principal, toute variété différentielle est naturellement munie d'un fibré des repères tangents.
rdf:langString 위상수학에서 틀다발(영어: frame bundle)은 임의의 벡터 다발에 대응되는, 일반 선형군을 올로 삼는 특별한 주다발이다.:§4.3, 121–131 벡터 다발의 틀다발은 원래 벡터 다발의 위상수학적 정보를 담고 있으며, 원래 벡터 다발은 틀다발의 연관 벡터 다발로서 재구성된다.
rdf:langString У математиці, розшаруванням реперів називається головне розшарування F(E) асоційоване із деяким векторним розшаруванням E. Шаром над точкою x у F(E) є множина всіх впорядкованих базисів, або реперів векторного простору Ex. Загальна лінійна група натурально діє на F(E) заміною базисів. Із цією дією розшарування реперів є головним GL(k, R)-розшаруванням (де k є рангом E). Для гладкого многовиду розшарування реперів розглядають в основному для дотичного розшарування. Воно також називається дотичним розшаруванням реперів.
rdf:langString 数学中,标架丛(Frame bundle)是一个与任何向量丛 E 相伴的主丛。F(E) 在一点 x 的纤维是 Ex 的所有有序基或曰标架。一般线性群通过基变更自然作用在 F(E) 上,给出标架丛一个主 GLk(R)-丛结构,这里 k 是 E 的秩。 一个光滑流形的标架丛是与其切丛相伴的丛。因此它有经常称为切标架丛(tangent frame bundle)。
xsd:nonNegativeInteger 14545

data from the linked data cloud