Fractional Fourier transform

http://dbpedia.org/resource/Fractional_Fourier_transform an entity of type: Thing

在數學中,分數傅立葉變換(Fractional Fourier transform,縮寫:FRFT)指的就是傅立葉變換(Fourier Transform)的廣義化。近幾年來,分數傅立葉變換除了在信號處理領域有相當廣泛的應用,其也在數學上被單獨地研究,而定義出如分數迴旋積分(Fractional Convolution)、分數相關(Fractional Correlation)等許多相關的數學運算。 分數傅立葉變換的物理意義即做傅立葉變換 次,其中 不一定要為整數;而做了分數傅立葉變換之後,信號或輸入函數便會出現在介於時域與頻域之間的分數域(Fractional Domain)。 若再更進一步地廣義化分數傅立葉變換,則可推廣至線性標準變換。 rdf:langString
In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition. rdf:langString
분수 푸리에 변환(영어: Fractional Fourier Transform, FRFT)는 조화해석학 용어로, 푸리에 변환을 일반화한 선형 변환의 일종이다. 분수 푸리에 변환은 푸리에 변환의 n제곱(n은 정수뿐만이 아니라 임의의 실수 )으로 볼 수 있다. 즉, time domain과 frequency domain 사이의 임의의 domain으로 주어진 함수를 이동할 수 있는 것이다. 이 변환이 활용되는 곳은 필터 설계와 신호 분석, 패턴 인식 등으로 다양하다. rdf:langString
数学の調和解析の分野において、分数次フーリエ変換(分数階フーリエ変換とも、英: fractional Fourier transform, FRFT)とは、フーリエ変換を一般化した一群の線形変換をいい、フーリエ変換の次数が整数でなくなったものと考えることができる。従って、関数を時間領域と周波数領域の「中間」領域に変換することができる。FRFTは、や信号解析、やパターン認識などに応用される。 FRFTは、分数次の畳み込み、相関関数、その他の操作の定義に使うことができ、さらにへと一般化できる。 FRFTの初期の定義はにより導入された。この定義は位相空間における回転のグリーン関数を解くことによるものだった。また、ウィーナーのエルミート多項式についての仕事を一般化することによる、ナミアスにより導入された定義も存在する。 しかし、信号処理の分野において広く認知されるようになったのは、1993年前後にいくつかのグループにより独立に再導入されてからであった。その時から、分数次フーリエ領域に帯域制限された信号にシャノンの標本化定理を拡張するという興味が巻き起こった。 rdf:langString
Em matemática a transformada fracional de Fourier (FRFT, do inglês fractional Fourier transform) é uma transformada integral que pode ser considerada uma generalização da transformada de Fourier multidimensional, baseada nas conhecidas propriedades de "rotação" desta última. Em notação de operadores, para maior concisão, pode-se escrever Uma versão discreta também foi definida, para uso em processamento digital, a . rdf:langString
rdf:langString Fractional Fourier transform
rdf:langString 분수 푸리에 변환
rdf:langString 分数次フーリエ変換
rdf:langString Transformada fracional de Fourier
rdf:langString 分數傅立葉變換
xsd:integer 1103773
xsd:integer 1123174679
rdf:langString #F9FFF7
rdf:langString In mathematics, in the area of harmonic analysis, the fractional Fourier transform (FRFT) is a family of linear transformations generalizing the Fourier transform. It can be thought of as the Fourier transform to the n-th power, where n need not be an integer — thus, it can transform a function to any intermediate domain between time and frequency. Its applications range from filter design and signal analysis to phase retrieval and pattern recognition. The FRFT can be used to define fractional convolution, correlation, and other operations, and can also be further generalized into the linear canonical transformation (LCT). An early definition of the FRFT was introduced by Condon, by solving for the Green's function for phase-space rotations, and also by Namias, generalizing work of Wiener on Hermite polynomials. However, it was not widely recognized in signal processing until it was independently reintroduced around 1993 by several groups. Since then, there has been a surge of interest in extending Shannon's sampling theorem for signals which are band-limited in the Fractional Fourier domain. A completely different meaning for "fractional Fourier transform" was introduced by Bailey and Swartztrauber as essentially another name for a z-transform, and in particular for the case that corresponds to a discrete Fourier transform shifted by a fractional amount in frequency space (multiplying the input by a linear chirp) and evaluating at a fractional set of frequency points (e.g. considering only a small portion of the spectrum). (Such transforms can be evaluated efficiently by Bluestein's FFT algorithm.) This terminology has fallen out of use in most of the technical literature, however, in preference to the FRFT. The remainder of this article describes the FRFT.
rdf:langString 분수 푸리에 변환(영어: Fractional Fourier Transform, FRFT)는 조화해석학 용어로, 푸리에 변환을 일반화한 선형 변환의 일종이다. 분수 푸리에 변환은 푸리에 변환의 n제곱(n은 정수뿐만이 아니라 임의의 실수 )으로 볼 수 있다. 즉, time domain과 frequency domain 사이의 임의의 domain으로 주어진 함수를 이동할 수 있는 것이다. 이 변환이 활용되는 곳은 필터 설계와 신호 분석, 패턴 인식 등으로 다양하다. 이 FRFT는 분수 합성곱, 상관관계, 그 밖에 다른 여러 가지의 분수 변환을 정의하는 데 쓰이며, 더 일반화한 것으로는 linear canonical transformation (LCT)이 있다. FRFT는 Condon, 에 의해 처음 도입되었으며, 이때의 목적은 그린 함수에 대한 phase-space 회전 방정식을 해결하기 위하여였다. 그후, Wiener의 에르미트 다항식에 대한 논문을 참조하여 Namias가 이를 더 확장하였다.그러나, 신호 처리 학계에는 1993년까지 거의 알려지지 않았다가, 알려진 이후에는 Shannon interpolation theorem을 Fourier transform에서 Fractional Fourier transform으로 확장하는 학계의 노력이 계속되어왔다.
rdf:langString 数学の調和解析の分野において、分数次フーリエ変換(分数階フーリエ変換とも、英: fractional Fourier transform, FRFT)とは、フーリエ変換を一般化した一群の線形変換をいい、フーリエ変換の次数が整数でなくなったものと考えることができる。従って、関数を時間領域と周波数領域の「中間」領域に変換することができる。FRFTは、や信号解析、やパターン認識などに応用される。 FRFTは、分数次の畳み込み、相関関数、その他の操作の定義に使うことができ、さらにへと一般化できる。 FRFTの初期の定義はにより導入された。この定義は位相空間における回転のグリーン関数を解くことによるものだった。また、ウィーナーのエルミート多項式についての仕事を一般化することによる、ナミアスにより導入された定義も存在する。 しかし、信号処理の分野において広く認知されるようになったのは、1993年前後にいくつかのグループにより独立に再導入されてからであった。その時から、分数次フーリエ領域に帯域制限された信号にシャノンの標本化定理を拡張するという興味が巻き起こった。 全く異なる「分数次フーリエ変換」の意味がベイリーとシュヴァルツトラウバーにより、本質的にはz変換の別名として、特に離散フーリエ変換を周波数空間で分数量だけシフトして(入力に線形チャープを乗じて)一部の周波数点(スペクトルの一部分だけ)において評価したものに相当する変換を指す用語として導入された(このような変換はにより効率的に評価することができる)。しかし、この用語はほとんどの技術的文献では使われなくなり、FRFTに取ってかわられた。以降ではFRFTについて説明する。
rdf:langString Em matemática a transformada fracional de Fourier (FRFT, do inglês fractional Fourier transform) é uma transformada integral que pode ser considerada uma generalização da transformada de Fourier multidimensional, baseada nas conhecidas propriedades de "rotação" desta última. Em notação de operadores, para maior concisão, pode-se escrever onde denota a transformada de Fourier de dimensão n, onde n é um inteiro. Em duas dimensões, as equações acima possuem uma interpretação geométrica simples: a aplicação da transformada de Fourier (bidimensional) duas vezes consecutivas equivale a uma rotação de 180°. Tal interpretação permite afirmar que a aplicação da transformada de Fourier equivale a uma rotação de 90° e, além disso, permite generalizar a transformação de forma a obter-se uma rotação por um ângulo qualquer. A transformada fracional de Fourier em uma dimensão é denotada por , onde a é um número real. Para a = 1, a FRFT se reduz à transformada de Fourier usual; para valores inteiros maiores que 1, ela equivale à aplicação sucessiva da transformada de Fourier; para a = 0, ela equivale a uma identidade; para a = -1, ela equivale à transformada de Fourier inversa, e assim por diante. A transformada será uma função não apenas da variável ω, mas também de a. A transformação fracional não é apenas um artifício matemático. Existem situações, em Óptica, por exemplo, em que uma transformação fracional corresponde exatamente ao processo físico (ver ). Uma propriedade notável da transformação é que a passagem do domínio do tempo ao domínio da frequência deixa de ser abrupta e passa a ser gradual. A FRFT foi proposta por em 1980, sofreu aperfeiçoamentos durante a década e cresceu em popularidade a partir de 1990. A idéia parece ter ocorrido primeiro a Norbert Wiener, em 1929. Entre as aplicações bem sucedidas até o momento, contam-se a solução da equação de Schroedinger e de outras equações diferenciais de segunda ordem, além de problemas selecionados em Óptica e em Análise de sinais. A transformada fracional de Fourier pode também ser relacionada com a distribuição de Wigner, uma ferramenta importante na análise de sinais não-estacionários. Uma versão discreta também foi definida, para uso em processamento digital, a .
rdf:langString 在數學中,分數傅立葉變換(Fractional Fourier transform,縮寫:FRFT)指的就是傅立葉變換(Fourier Transform)的廣義化。近幾年來,分數傅立葉變換除了在信號處理領域有相當廣泛的應用,其也在數學上被單獨地研究,而定義出如分數迴旋積分(Fractional Convolution)、分數相關(Fractional Correlation)等許多相關的數學運算。 分數傅立葉變換的物理意義即做傅立葉變換 次,其中 不一定要為整數;而做了分數傅立葉變換之後,信號或輸入函數便會出現在介於時域與頻域之間的分數域(Fractional Domain)。 若再更進一步地廣義化分數傅立葉變換,則可推廣至線性標準變換。
rdf:langString #0073CF
xsd:integer 6
rdf:langString ::
xsd:nonNegativeInteger 24941

data from the linked data cloud