Forte number
http://dbpedia.org/resource/Forte_number an entity of type: Place
In musical set theory, a Forte number is the pair of numbers Allen Forte assigned to the prime form of each pitch class set of three or more members in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). The first number indicates the number of pitch classes in the pitch class set and the second number indicates the set's sequence in Forte's ordering of all pitch class sets containing that number of pitches.
rdf:langString
Il set 3-1 ha tre possibili rotazioni/inversioni, la cui forma normale è la torta più piccola o la forma più compatta Nella teoria degli insiemi musicali, un numero di Forte è la coppia di numeri che Allen Forte ha assegnato alla forma primaria di ogni insieme di classi di altezze di tre o più membri in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). Il primo numero indica il numero di classi di altezza nell'insieme di classi di altezza e il secondo numero indica la posizione della sequenza dell'insieme nell'ordine di Forte di tutti gli insiemi di classi di altezza che contengono lo stesso numero di altezze.
rdf:langString
rdf:langString
Forte number
rdf:langString
Numero di Forte
xsd:integer
27942103
xsd:integer
1110546640
rdf:langString
In musical set theory, a Forte number is the pair of numbers Allen Forte assigned to the prime form of each pitch class set of three or more members in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). The first number indicates the number of pitch classes in the pitch class set and the second number indicates the set's sequence in Forte's ordering of all pitch class sets containing that number of pitches. In the 12-TET tuning system (or in any other system of tuning that splits the octave into twelve semitones), each pitch class may be denoted by an integer in the range from 0 to 11 (inclusive), and a pitch class set may be denoted by a set of these integers.The prime form of a pitch class set is the most compact (i.e., leftwards packed or smallest in lexicographic order) of either the normal form of a set or of its inversion. The normal form of a set is that which is transposed so as to be most compact. For example, a second inversion major chord contains the pitch classes 7, 0, and 4. The normal form would then be 0, 4 and 7. Its (transposed) inversion, which happens to be the minor chord, contains the pitch classes 0, 3, and 7; and is the prime form. The major and minor chords are both given Forte number 3-11, indicating that it is the eleventh in Forte's ordering of pitch class sets with three pitches. In contrast, the Viennese trichord, with pitch classes 0, 1, and 6, is given Forte number 3-5, indicating that it is the fifth in Forte's ordering of pitch class sets with three pitches. The normal form of the diatonic scale, such as C major; 0, 2, 4, 5, 7, 9, and 11; is 11, 0, 2, 4, 5, 7, and 9; while its prime form is 0, 1, 3, 5, 6, 8, and 10; and its Forte number is 7-35, indicating that it is the thirty-fifth of the seven-member pitch class sets. Sets of pitches which share the same Forte number have identical interval vectors. Those that have different Forte numbers have different interval vectors with the exception of z-related sets (for example 6-Z44 and 6-Z19).
rdf:langString
Il set 3-1 ha tre possibili rotazioni/inversioni, la cui forma normale è la torta più piccola o la forma più compatta Nella teoria degli insiemi musicali, un numero di Forte è la coppia di numeri che Allen Forte ha assegnato alla forma primaria di ogni insieme di classi di altezze di tre o più membri in The Structure of Atonal Music (1973, ISBN 0-300-02120-8). Il primo numero indica il numero di classi di altezza nell'insieme di classi di altezza e il secondo numero indica la posizione della sequenza dell'insieme nell'ordine di Forte di tutti gli insiemi di classi di altezza che contengono lo stesso numero di altezze. Accordi maggiori e minori in Do
xsd:nonNegativeInteger
5648