Extreme point

http://dbpedia.org/resource/Extreme_point an entity of type: Place

Ein Extremalpunkt einer konvexen Menge K eines reellen Vektorraums ist ein Punkt x aus K, der sich nicht als Konvexkombination zweier verschiedener Punkte aus K darstellen lässt, also zwischen keinen zwei anderen Punkten aus K liegt. Das heißt, es gibt keine Punkte mit für ein . rdf:langString
In mathematics, an extreme point of a convex set in a real or complex vector space is a point in which does not lie in any open line segment joining two points of In linear programming problems, an extreme point is also called vertex or corner point of rdf:langString
数学において、ある実ベクトル空間内の凸集合 S の頂点、端点あるいは極点(きょくてん、英: extreme point)とは、S の任意の二点を結ぶ開線分に含まれない点のことを言う。直観的に言えば、極点は S の頂点 (vertex) と見做すことのできるような点である。 * クレイン=ミルマンの定理によると、S がある局所凸空間内で凸かつコンパクトであるなら、S はその極点集合の閉凸包であることが示されている。特に、そのような集合は極点を持つ。 クレイン=ミルマンの定理は局所凸位相ベクトル空間に対して述べられている。次の定理は、ラドン=ニコディム性を持つバナッハ空間に対して述べられる。 * の定理によると、ラドン=ニコディム性を持つバナッハ空間において、閉かつ有界な集合は極点を持つことが示されている(無限次元空間において、コンパクト性は、閉かつ有界よりも強い)。 * ジェラルド・エドガーの定理によると、ラドン=ニコディム性を持つバナッハ空間において、閉かつ有界な集合はその極点集合の閉凸包であることが示されている。エドガーの定理はリンデンシュトラウスの定理を含むものである。 rdf:langString
기하학에서 극점(極點, 영어: extreme point)은 어떤 볼록 집합 속의 점 가운데, 다른 두 점의 볼록 선형 결합으로 나타낼 수 없는 것이다. 즉, 볼록 집합의 일종의 ‘귀퉁이’에 해당한다. 크레인-밀만 정리(Крейн-Мильман定理, 영어: Krein–Milman theorem)에 따르면, 실수 국소 볼록 공간의 콤팩트 볼록 집합은 그 극점들의 볼록 폐포와 같다. 쇼케 정리(Choquet定理, 영어: Choquet’s theorem)에 따르면, 거리화 가능 콤팩트 볼록 집합 속의 임의의 점은 그 극점 집합 위에 정의된 확률 측도의 무게 중심으로 나타내어진다. rdf:langString
In matematica, un punto estremale di un insieme convesso S in uno spazio vettoriale è un punto che non appartiene a nessun segmento aperto tracciato tra due punti distinti di S. Intuitivamente, si possono vedere i punti estremali come i "vertici" dell'insieme. rdf:langString
Punkt ekstremalny zbioru wypukłego – punkt zbioru wypukłego, który nie leży wewnątrz żadnego niezdegenerowanego odcinka zawartego w tym zbiorze. Równoważnie, punkt jest punktem ekstremalnym zbioru wypukłego gdy równość dla pewnych oraz implikuje, że lub . Zbiór punktów ekstremalnych zbioru wypukłego oznaczany bywa symbolem rdf:langString
Крайняя точка выпуклого множества K в вещественном векторном пространстве — точка, не являющаяся серединой отрезка в K. rdf:langString
Face à un polyèdre convexe de l'espace de dimension 3, qu'il soit familier comme un cube ou plus compliqué, on sait spontanément reconnaître les points où le convexe est « pointu », ses sommets, puis subdiviser les points restants entre points des arêtes et points des faces. Après avoir énuméré trois généralisations des sommets d'un cube, l'article présente deux variantes de la hiérarchie sommet-arête-face qui coïncident pour les polyèdres convexes. rdf:langString
rdf:langString Extremalpunkt
rdf:langString Extreme point
rdf:langString Points et parties remarquables de la frontière d'un convexe
rdf:langString Punto estremale
rdf:langString 극점 (기하학)
rdf:langString 極点
rdf:langString Punkt ekstremalny
rdf:langString Крайняя точка
rdf:langString Theorem
xsd:integer 454968
xsd:integer 1119699983
rdf:langString Ein Extremalpunkt einer konvexen Menge K eines reellen Vektorraums ist ein Punkt x aus K, der sich nicht als Konvexkombination zweier verschiedener Punkte aus K darstellen lässt, also zwischen keinen zwei anderen Punkten aus K liegt. Das heißt, es gibt keine Punkte mit für ein .
rdf:langString In mathematics, an extreme point of a convex set in a real or complex vector space is a point in which does not lie in any open line segment joining two points of In linear programming problems, an extreme point is also called vertex or corner point of
rdf:langString Face à un polyèdre convexe de l'espace de dimension 3, qu'il soit familier comme un cube ou plus compliqué, on sait spontanément reconnaître les points où le convexe est « pointu », ses sommets, puis subdiviser les points restants entre points des arêtes et points des faces. Cet article présente quelques définitions qui étendent ces concepts aux ensembles convexes généraux, de dimension quelconque, à la frontière éventuellement incurvée. Une de ces généralisations, le concept de sommet, correspond à l'intuition que l'on peut avoir de cette notion sur un cube (les points d'une sphère ne seront pas des sommets de la boule qu'elle limite). Les points extrémaux peuvent pour leur part être plus nombreux, suffisamment pour permettre de reconstituer tout le convexe par leur enveloppe convexe, et ce même si sa forme est lisse (ainsi tous les points de la frontière d'une boule sont extrémaux). Après avoir énuméré trois généralisations des sommets d'un cube, l'article présente deux variantes de la hiérarchie sommet-arête-face qui coïncident pour les polyèdres convexes.
rdf:langString 数学において、ある実ベクトル空間内の凸集合 S の頂点、端点あるいは極点(きょくてん、英: extreme point)とは、S の任意の二点を結ぶ開線分に含まれない点のことを言う。直観的に言えば、極点は S の頂点 (vertex) と見做すことのできるような点である。 * クレイン=ミルマンの定理によると、S がある局所凸空間内で凸かつコンパクトであるなら、S はその極点集合の閉凸包であることが示されている。特に、そのような集合は極点を持つ。 クレイン=ミルマンの定理は局所凸位相ベクトル空間に対して述べられている。次の定理は、ラドン=ニコディム性を持つバナッハ空間に対して述べられる。 * の定理によると、ラドン=ニコディム性を持つバナッハ空間において、閉かつ有界な集合は極点を持つことが示されている(無限次元空間において、コンパクト性は、閉かつ有界よりも強い)。 * ジェラルド・エドガーの定理によると、ラドン=ニコディム性を持つバナッハ空間において、閉かつ有界な集合はその極点集合の閉凸包であることが示されている。エドガーの定理はリンデンシュトラウスの定理を含むものである。
rdf:langString 기하학에서 극점(極點, 영어: extreme point)은 어떤 볼록 집합 속의 점 가운데, 다른 두 점의 볼록 선형 결합으로 나타낼 수 없는 것이다. 즉, 볼록 집합의 일종의 ‘귀퉁이’에 해당한다. 크레인-밀만 정리(Крейн-Мильман定理, 영어: Krein–Milman theorem)에 따르면, 실수 국소 볼록 공간의 콤팩트 볼록 집합은 그 극점들의 볼록 폐포와 같다. 쇼케 정리(Choquet定理, 영어: Choquet’s theorem)에 따르면, 거리화 가능 콤팩트 볼록 집합 속의 임의의 점은 그 극점 집합 위에 정의된 확률 측도의 무게 중심으로 나타내어진다.
rdf:langString In matematica, un punto estremale di un insieme convesso S in uno spazio vettoriale è un punto che non appartiene a nessun segmento aperto tracciato tra due punti distinti di S. Intuitivamente, si possono vedere i punti estremali come i "vertici" dell'insieme.
rdf:langString Punkt ekstremalny zbioru wypukłego – punkt zbioru wypukłego, który nie leży wewnątrz żadnego niezdegenerowanego odcinka zawartego w tym zbiorze. Równoważnie, punkt jest punktem ekstremalnym zbioru wypukłego gdy równość dla pewnych oraz implikuje, że lub . Zbiór punktów ekstremalnych zbioru wypukłego oznaczany bywa symbolem
rdf:langString Крайняя точка выпуклого множества K в вещественном векторном пространстве — точка, не являющаяся серединой отрезка в K.
rdf:langString If is convex and compact in a locally convex topological vector space, then is the closed convex hull of its extreme points: In particular, such a set has extreme points.
rdf:langString Let be a non-empty convex subset of a vector space and let Then the following statements are equivalent: is an extreme point of is convex. is not the midpoint of a non-degenerate line segment contained in for any if then if is such that both and belong to then is a face of
rdf:langString Let be a Banach space with the Radon-Nikodym property, let be a separable, closed, bounded, convex subset of and let be a point in Then there is a probability measure on the universally measurable sets in such that is the barycenter of and the set of extreme points of has -measure 1.
xsd:nonNegativeInteger 12112

data from the linked data cloud