Excavated dodecahedron

http://dbpedia.org/resource/Excavated_dodecahedron

En geometria, el dodecàedre excavat és un que té 60 cares triangulars equilàteres. La seva superfície exterior representa l'estelació de l'icosàedre. Apareix al llibre de Polyhedron Models com a model 28, la tercera estelació de l'icosàedre. rdf:langString
Das ausgehöhlte Dodekaeder ist ein konkaves Polyeder, das sich aus 60 gleichseitigen Dreiecken zusammensetzt und zu den Sternkörpern zählt. 20 der insgesamt 32 Ecken sind identisch mit denen eines Dodekaeders, das die konvexe Hülle des Sternkörpers bildet. Die übrigen innen liegenden 12 Ecken bilden die Eckpunkte eines Ikosaeders. rdf:langString
En geometría, el dodecaedro excavado es un poliedro estelado que se parece a un dodecaedro con pirámides cóncavas en lugar de sus caras. Su superficie exterior representa la estelación Ef1g1 del icosaedro. Aparece en el libro Polyhedron Models de Magnus Wenninger como modelo 28, catalogado como la tercera estelación del icosaedro. rdf:langString
In geometry, the excavated dodecahedron is a star polyhedron that looks like a dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book Polyhedron Models as model 28, the third stellation of icosahedron. rdf:langString
在幾何學中,凹五角錐十二面體是一種星形多面體。 它的外形是一個Ef1g1星狀的二十面體。 溫尼爾在他的書中列出28種星形多面體模型,並將凹五角錐十二面體列為第三個星狀的二十面體。 rdf:langString
rdf:langString Dodecàedre excavat
rdf:langString Ausgehöhltes Dodekaeder
rdf:langString Dodecaedro excavado
rdf:langString Excavated dodecahedron
rdf:langString 凹五角錐十二面體
xsd:integer 32917096
xsd:integer 1057674935
rdf:langString left
rdf:langString right
rdf:langString The great dodecahedron is an excavated icosahedron. It also has 60 visible triangles. But unlike the e. d. it has convex faces and thus no inner edges.
rdf:langString A pentakis dodecahedron with inverted pyramids has the same surface.
rdf:langString The faces of the e. d. are part of the faces of the great icosahedron . Extending the short edges of a hexagon until they meet gives the triangle that contains it. (Replacing each self-intersecting hexagon with a convex one gives a figure containing the edges of the compound of five cubes . But this is not really a polyhedron, because each of these edges belongs to only one face.)
<second> 12.0
rdf:langString Concave pentakis dodecahedron.png
rdf:langString Polyhedron great 20 pyritohedral, face gray.png
rdf:langString Polyhedron great 20 pyritohedral.png
rdf:langString Polyhedron truncated 20 dual big.png
rdf:langString Pyritohedral excavated dodecahedron, face gray.png
rdf:langString Pyritohedral excavated dodecahedron.png
rdf:langString Pyritohedral great icosahedron core, face gray.png
rdf:langString Pyritohedral great icosahedron core.png
rdf:langString Stell12g cells solid 3 stacked.png
xsd:integer 3
xsd:integer 200
rdf:langString En geometria, el dodecàedre excavat és un que té 60 cares triangulars equilàteres. La seva superfície exterior representa l'estelació de l'icosàedre. Apareix al llibre de Polyhedron Models com a model 28, la tercera estelació de l'icosàedre.
rdf:langString Das ausgehöhlte Dodekaeder ist ein konkaves Polyeder, das sich aus 60 gleichseitigen Dreiecken zusammensetzt und zu den Sternkörpern zählt. 20 der insgesamt 32 Ecken sind identisch mit denen eines Dodekaeders, das die konvexe Hülle des Sternkörpers bildet. Die übrigen innen liegenden 12 Ecken bilden die Eckpunkte eines Ikosaeders.
rdf:langString En geometría, el dodecaedro excavado es un poliedro estelado que se parece a un dodecaedro con pirámides cóncavas en lugar de sus caras. Su superficie exterior representa la estelación Ef1g1 del icosaedro. Aparece en el libro Polyhedron Models de Magnus Wenninger como modelo 28, catalogado como la tercera estelación del icosaedro.
rdf:langString In geometry, the excavated dodecahedron is a star polyhedron that looks like a dodecahedron with concave pentagonal pyramids in place of its faces. Its exterior surface represents the Ef1g1 stellation of the icosahedron. It appears in Magnus Wenninger's book Polyhedron Models as model 28, the third stellation of icosahedron.
rdf:langString 在幾何學中,凹五角錐十二面體是一種星形多面體。 它的外形是一個Ef1g1星狀的二十面體。 溫尼爾在他的書中列出28種星形多面體模型,並將凹五角錐十二面體列為第三個星狀的二十面體。
xsd:nonNegativeInteger 5970

data from the linked data cloud