Error tolerance (PAC learning)

http://dbpedia.org/resource/Error_tolerance_(PAC_learning)

In PAC learning, error tolerance refers to the ability of an algorithm to learn when the examples received have been corrupted in some way. In fact, this is a very common and important issue since in many applications it is not possible to access noise-free data. Noise can interfere with the learning process at different levels: the algorithm may receive data that have been occasionally mislabeled, or the inputs may have some false information, or the classification of the examples may have been maliciously adulterated. rdf:langString
rdf:langString Error tolerance (PAC learning)
xsd:integer 48833041
xsd:integer 1023213519
rdf:langString In PAC learning, error tolerance refers to the ability of an algorithm to learn when the examples received have been corrupted in some way. In fact, this is a very common and important issue since in many applications it is not possible to access noise-free data. Noise can interfere with the learning process at different levels: the algorithm may receive data that have been occasionally mislabeled, or the inputs may have some false information, or the classification of the examples may have been maliciously adulterated.
xsd:nonNegativeInteger 11435

data from the linked data cloud