Edge dominating set
http://dbpedia.org/resource/Edge_dominating_set an entity of type: WikicatComputationalProblemsInGraphTheory
In graph theory, an edge dominating set for a graph G = (V, E) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines). A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph).
rdf:langString
В теории графов доминирующее множество рёбер (или рёберное доминирующее множество) графа G = (V, E) — это подмножество D ⊆ E, такое, что любое ребро не из D смежно по меньшей мере одному ребру из D. На рисунках (a)–(d) приведены примеры доминирующих множеств рёбер (красные рёбра). Наименьшее доминирующее множество рёбер — это доминирующие множества рёбер с наименьшим размером. На рисунках (a) и (b) представлены примеры наименьших доминирующих множеств рёбер (можно проверить, что для данного графа не существует доминирующего множества из двух рёбер).
rdf:langString
rdf:langString
Edge dominating set
rdf:langString
Доминирующее множество рёбер
rdf:langString
Домінівна множина ребер
xsd:integer
21689422
xsd:integer
1035648620
rdf:langString
In graph theory, an edge dominating set for a graph G = (V, E) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines). A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph).
rdf:langString
В теории графов доминирующее множество рёбер (или рёберное доминирующее множество) графа G = (V, E) — это подмножество D ⊆ E, такое, что любое ребро не из D смежно по меньшей мере одному ребру из D. На рисунках (a)–(d) приведены примеры доминирующих множеств рёбер (красные рёбра). Наименьшее доминирующее множество рёбер — это доминирующие множества рёбер с наименьшим размером. На рисунках (a) и (b) представлены примеры наименьших доминирующих множеств рёбер (можно проверить, что для данного графа не существует доминирующего множества из двух рёбер).
xsd:nonNegativeInteger
5911