Dupin indicatrix
http://dbpedia.org/resource/Dupin_indicatrix an entity of type: Software
Unter einer Indikatrix versteht man in der Differentialgeometrie gekrümmter Flächen im Raum einen ebenen Kegelschnitt, der das lokale Krümmungsverhalten der Fläche in einem bestimmten Punkt beschreibt. Der Begriff wurde von Charles Dupin zu Beginn des 19. Jahrhunderts eingeführt und trägt daher auch den Namen Dupinsche Indikatrix.
rdf:langString
Індикатриса Дюпена або індикатриса кривини — плоска крива на дотичній площині до поверхні, яка дає наочне уявлення про викривлення поверхні в даній її точці. Індикатриса Дюпена названа на честь французького математика Шарля Дюпена, що вперше застосував її до дослідження поверхонь у 1813 році.
rdf:langString
Индикатриса Дюпена или индикатриса кривизны — плоская кривая, которая даёт наглядное представление об искривленности поверхности в данной её точке.
rdf:langString
In differential geometry, the Dupin indicatrix is a method for characterising the local shape of a surface. Draw a plane parallel to the tangent plane and a small distance away from it. Consider the intersection of the surface with this plane. The shape of the intersection is related to the Gaussian curvature. The Dupin indicatrix is the result of the limiting process as the plane approaches the tangent plane. The indicatrix was invented by Charles Dupin.
rdf:langString
rdf:langString
Indikatrix
rdf:langString
Dupin indicatrix
rdf:langString
Индикатриса Дюпена
rdf:langString
Індикатриса Дюпена
xsd:integer
9758831
xsd:integer
1091415075
rdf:langString
Unter einer Indikatrix versteht man in der Differentialgeometrie gekrümmter Flächen im Raum einen ebenen Kegelschnitt, der das lokale Krümmungsverhalten der Fläche in einem bestimmten Punkt beschreibt. Der Begriff wurde von Charles Dupin zu Beginn des 19. Jahrhunderts eingeführt und trägt daher auch den Namen Dupinsche Indikatrix.
rdf:langString
In differential geometry, the Dupin indicatrix is a method for characterising the local shape of a surface. Draw a plane parallel to the tangent plane and a small distance away from it. Consider the intersection of the surface with this plane. The shape of the intersection is related to the Gaussian curvature. The Dupin indicatrix is the result of the limiting process as the plane approaches the tangent plane. The indicatrix was invented by Charles Dupin. For elliptical points where the Gaussian curvature is positive the intersection will either be empty or form a closed curve. In the limit this curve will form an ellipse aligned with the principal directions. For hyperbolic points, where the Gaussian curvature is negative, the intersection will form a hyperbola. Two different hyperbolas will be formed on either side of the tangent plane. These hyperbolas share the same axis and asymptotes. The directions of the asymptotes are the same as the asymptotic directions.
rdf:langString
Індикатриса Дюпена або індикатриса кривини — плоска крива на дотичній площині до поверхні, яка дає наочне уявлення про викривлення поверхні в даній її точці. Індикатриса Дюпена названа на честь французького математика Шарля Дюпена, що вперше застосував її до дослідження поверхонь у 1813 році.
rdf:langString
Индикатриса Дюпена или индикатриса кривизны — плоская кривая, которая даёт наглядное представление об искривленности поверхности в данной её точке.
xsd:nonNegativeInteger
1684