Du Val singularity
http://dbpedia.org/resource/Du_Val_singularity an entity of type: Artifact100021939
대수기하학에서 뒤발 특이점(영어: du Val singularity) 또는 클라인 특이점(영어: Kleinian singularity)은 복소 대수 곡면의 특이점의 한 종류다. 이들은 최소분해(영어: minimal resolution)가 존재하며, 이는 ADE형의 딘킨 도표로 분류된다.
rdf:langString
代数幾何学において単純曲面特異点(英:simple surface singlarity)、クライン特異点(英:Kleinian singlarity)、もしくは有理二重点(英:rational double point)とも呼ばれるデュ・バル特異点(英:du Val singlarity)は複素曲面の孤立特異点である。のタイプのディンキン図形に二重な交差のパターンをもち、滑らかな有理曲線の木をもったその特異点の置き換えによって得られる最小特異点解消(英:minimal resolution)をもつ、平面の二重分岐被覆によってそれはモデル化される。それらは二次元の標準特異点(または、同値的に、有理ゴレンスタイン特異点(英:rational Gorenstein singularity))である。それらは とフェリックス・クラインによって研究された。 二項正多面体群として知られるSU(2)の有限部分群(英:finite subgroup)に同等の、SL2(C)の有限部分群による、の商としてもデュ・バル特異点は現れる。これらの有限群の作用のの環(英:ring of invariant polynomial)はクラインによって計算され、そして本質的にその特異点の座標環である;これは古典的なの帰結である。
rdf:langString
In algebraic geometry, a Du Val singularity, also called simple surface singularity, Kleinian singularity, or rational double point, is an isolated singularity of a complex surface which is modeled on a double branched cover of the plane, with minimal resolution obtained by replacing the singular point with a tree of smooth rational curves, with intersection pattern dual to a Dynkin diagram of A-D-E singularity type. They are the canonical singularities (or, equivalently, rational Gorenstein singularities) in dimension 2. They were studied by Patrick du Val and Felix Klein.
rdf:langString
rdf:langString
Du Val singularity
rdf:langString
뒤발 특이점
rdf:langString
デュ・バル特異点
xsd:integer
22921783
xsd:integer
1102452082
rdf:langString
In algebraic geometry, a Du Val singularity, also called simple surface singularity, Kleinian singularity, or rational double point, is an isolated singularity of a complex surface which is modeled on a double branched cover of the plane, with minimal resolution obtained by replacing the singular point with a tree of smooth rational curves, with intersection pattern dual to a Dynkin diagram of A-D-E singularity type. They are the canonical singularities (or, equivalently, rational Gorenstein singularities) in dimension 2. They were studied by Patrick du Val and Felix Klein. The Du Val singularities also appear as quotients of by a finite subgroup of SL2; equivalently, a finite subgroup of SU(2), which are known as binary polyhedral groups. The rings of invariant polynomials of these finite group actions were computed by Klein, and are essentially the coordinate rings of the singularities; this is a classic result in invariant theory.
rdf:langString
대수기하학에서 뒤발 특이점(영어: du Val singularity) 또는 클라인 특이점(영어: Kleinian singularity)은 복소 대수 곡면의 특이점의 한 종류다. 이들은 최소분해(영어: minimal resolution)가 존재하며, 이는 ADE형의 딘킨 도표로 분류된다.
rdf:langString
代数幾何学において単純曲面特異点(英:simple surface singlarity)、クライン特異点(英:Kleinian singlarity)、もしくは有理二重点(英:rational double point)とも呼ばれるデュ・バル特異点(英:du Val singlarity)は複素曲面の孤立特異点である。のタイプのディンキン図形に二重な交差のパターンをもち、滑らかな有理曲線の木をもったその特異点の置き換えによって得られる最小特異点解消(英:minimal resolution)をもつ、平面の二重分岐被覆によってそれはモデル化される。それらは二次元の標準特異点(または、同値的に、有理ゴレンスタイン特異点(英:rational Gorenstein singularity))である。それらは とフェリックス・クラインによって研究された。 二項正多面体群として知られるSU(2)の有限部分群(英:finite subgroup)に同等の、SL2(C)の有限部分群による、の商としてもデュ・バル特異点は現れる。これらの有限群の作用のの環(英:ring of invariant polynomial)はクラインによって計算され、そして本質的にその特異点の座標環である;これは古典的なの帰結である。
xsd:nonNegativeInteger
5614