Donaldson's theorem

http://dbpedia.org/resource/Donaldson's_theorem an entity of type: WikicatTheoremsInTopology

In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the integers. The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group. rdf:langString
数学では、ドナルドソンの定理(Donaldson's theorem)は、次元 4 の単連結な滑らかな多様体(smooth manifold)の定値(definite)な交叉形式は、対角化可能であるという定理である。交叉形式が正定値(負定値)であれば、交叉形式は整数上の単位行列(負の単位行列)に対角化可能である。 rdf:langString
rdf:langString Donaldson's theorem
rdf:langString ドナルドソンの定理
xsd:integer 2180754
xsd:integer 1083050809
rdf:langString In mathematics, and especially differential topology and gauge theory, Donaldson's theorem states that a definite intersection form of a compact, oriented, smooth manifold of dimension 4 is diagonalisable. If the intersection form is positive (negative) definite, it can be diagonalized to the identity matrix (negative identity matrix) over the integers. The original version of the theorem required the manifold to be simply connected, but it was later improved to apply to 4-manifolds with any fundamental group.
rdf:langString 数学では、ドナルドソンの定理(Donaldson's theorem)は、次元 4 の単連結な滑らかな多様体(smooth manifold)の定値(definite)な交叉形式は、対角化可能であるという定理である。交叉形式が正定値(負定値)であれば、交叉形式は整数上の単位行列(負の単位行列)に対角化可能である。
xsd:nonNegativeInteger 7170

data from the linked data cloud