Divergent geometric series
http://dbpedia.org/resource/Divergent_geometric_series
In mathematics, an infinite geometric series of the form is divergent if and only if | r | ≥ 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that agrees with the formula for the convergent case This is true of any summation method that possesses the properties of regularity, linearity, and stability.
rdf:langString
数学中,幾何級數 是发散的,当且仅当 | r | ≥ 1,此稱為發散幾何級數(英語:Divergent geometric series)。有时需要考虑发散级数的求和,通常利用与收敛情况相同的公式来计算发散几何级数的和: 。
rdf:langString
rdf:langString
Divergent geometric series
rdf:langString
发散几何级数
xsd:integer
9777020
xsd:integer
924663796
rdf:langString
In mathematics, an infinite geometric series of the form is divergent if and only if | r | ≥ 1. Methods for summation of divergent series are sometimes useful, and usually evaluate divergent geometric series to a sum that agrees with the formula for the convergent case This is true of any summation method that possesses the properties of regularity, linearity, and stability.
rdf:langString
数学中,幾何級數 是发散的,当且仅当 | r | ≥ 1,此稱為發散幾何級數(英語:Divergent geometric series)。有时需要考虑发散级数的求和,通常利用与收敛情况相同的公式来计算发散几何级数的和: 。
xsd:nonNegativeInteger
2754