Divergence (statistics)
http://dbpedia.org/resource/Divergence_(statistics) an entity of type: Thing
In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED. The other most important divergence is relative entropy (Kullback–Leibler divergence, KL divergence), which is central to information theory. There are numerous other specific divergences and classes of divergences, notably f-divergences and Bregman divergences (see ).
rdf:langString
En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices.
rdf:langString
rdf:langString
Divergence (statistics)
rdf:langString
Divergence (statistiques)
xsd:integer
25896411
xsd:integer
1103479767
rdf:langString
In information geometry, a divergence is a kind of statistical distance: a binary function which establishes the separation from one probability distribution to another on a statistical manifold. The simplest divergence is squared Euclidean distance (SED), and divergences can be viewed as generalizations of SED. The other most important divergence is relative entropy (Kullback–Leibler divergence, KL divergence), which is central to information theory. There are numerous other specific divergences and classes of divergences, notably f-divergences and Bregman divergences (see ).
rdf:langString
En statistiques, une divergence est une fonction ou une fonctionnelle qui mesure la dissimilarité d'une loi de probabilité par rapport à une autre. Selon le contexte, elles peuvent être définies pour des lois, des mesures positives (non-normalisées), des vecteurs (par exemple sur l'espace des paramètres si l'on considère un modèle paramétrique), ou encore des matrices. Les divergences sont analogues à des distances au carré et permettent de généraliser la notion de distance aux variétés statistiques, mais il s'agit d'une notion plus faible dans la mesure où elles ne sont en général pas symétriques et ne vérifient pas l'inégalité triangulaire.
xsd:nonNegativeInteger
19371