Dilworth's theorem

http://dbpedia.org/resource/Dilworth's_theorem an entity of type: WikicatMathematicalTheorems

Der Satz von Dilworth ist ein mathematischer Lehrsatz, welcher sowohl der Ordnungstheorie als auch der Diskreten Mathematik zuzuordnen ist. Er gilt als einer der fundamentalen Sätze der sogenannten Matching theory. Der Satz geht zurück auf eine Arbeit von Robert Palmer Dilworth aus dem Jahr 1950. Er macht eine grundlegende Aussage über das Zusammenspiel zwischen Ketten und Antiketten in einer Halbordnung. rdf:langString
Le théorème de Dilworth en théorie des ordres et en combinatoire, dû à Robert Dilworth, caractérise la largeur de tout ordre (partiel) fini en termes d'une partition de cet ordre en un nombre minimum de chaînes. rdf:langString
조합론에서 딜워스의 정리(Dilworth의定理, 영어: Dilworth’s theorem)는 부분 순서 집합의 반사슬의 최대 크기에 대한 정리다. rdf:langString
In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician Robert P. Dilworth. A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition into finitely many chains, or when there exists a finite upper bound on the size of an antichain, the sizes of the largest antichain and of the smallest chain decomposition are again equal. rdf:langString
Теорема Дилуорса — комбинаторное утверждение, характеризующее экстремальное свойство для частично упорядоченных множеств: конечное частично упорядоченное множество может быть разбито на попарно непересекающихся цепей, где — количество элементов наибольшей антицепи множества (называемое также шириной частично упорядоченного множества). Версия теоремы для бесконечных частично упорядоченных множеств: частично упорядоченное множество имеет конечную ширину тогда и только тогда, когда его можно разбить на цепей, но не меньше. rdf:langString
У математиці, в таких галузях, як теорія порядку та комбінаторика, Теорема Ділуорса характеризує ширину довільної скінченної частково впорядкованої множини у термінах розбиття цього порядку на найменше число ланцюгів. Названа на честь математика . Еквівалентне формулювання Теореми Ділуорса таке, у довільній частково впорядкованій множині, найбільше число елементів у будь-якому антиланцюзі дорівнює найменшому числу ланцюгів у будь-якому розбитті даної множини на ланцюги. rdf:langString
rdf:langString Satz von Dilworth
rdf:langString Dilworth's theorem
rdf:langString Théorème de Dilworth
rdf:langString 딜워스의 정리
rdf:langString Теорема Дилуорса
rdf:langString Теорема Ділуорса
xsd:integer 749033
xsd:integer 1092446153
rdf:langString Robert P. Dilworth
rdf:langString Robert P.
rdf:langString Dilworth
rdf:langString Dilworth's Lemma
rdf:langString DilworthsLemma
xsd:integer 1950
rdf:langString Der Satz von Dilworth ist ein mathematischer Lehrsatz, welcher sowohl der Ordnungstheorie als auch der Diskreten Mathematik zuzuordnen ist. Er gilt als einer der fundamentalen Sätze der sogenannten Matching theory. Der Satz geht zurück auf eine Arbeit von Robert Palmer Dilworth aus dem Jahr 1950. Er macht eine grundlegende Aussage über das Zusammenspiel zwischen Ketten und Antiketten in einer Halbordnung.
rdf:langString In mathematics, in the areas of order theory and combinatorics, Dilworth's theorem characterizes the width of any finite partially ordered set in terms of a partition of the order into a minimum number of chains. It is named for the mathematician Robert P. Dilworth. An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest antichain has the same size as the smallest chain decomposition. Here, the size of the antichain is its number of elements, and the size of the chain decomposition is its number of chains. The width of the partial order is defined as the common size of the antichain and chain decomposition. A version of the theorem for infinite partially ordered sets states that, when there exists a decomposition into finitely many chains, or when there exists a finite upper bound on the size of an antichain, the sizes of the largest antichain and of the smallest chain decomposition are again equal.
rdf:langString Le théorème de Dilworth en théorie des ordres et en combinatoire, dû à Robert Dilworth, caractérise la largeur de tout ordre (partiel) fini en termes d'une partition de cet ordre en un nombre minimum de chaînes.
rdf:langString 조합론에서 딜워스의 정리(Dilworth의定理, 영어: Dilworth’s theorem)는 부분 순서 집합의 반사슬의 최대 크기에 대한 정리다.
rdf:langString Теорема Дилуорса — комбинаторное утверждение, характеризующее экстремальное свойство для частично упорядоченных множеств: конечное частично упорядоченное множество может быть разбито на попарно непересекающихся цепей, где — количество элементов наибольшей антицепи множества (называемое также шириной частично упорядоченного множества). Версия теоремы для бесконечных частично упорядоченных множеств: частично упорядоченное множество имеет конечную ширину тогда и только тогда, когда его можно разбить на цепей, но не меньше. Доказана американским математиком (англ. Robert P. Dilworth; 1914—1993), главной областью исследований которого была теория решёток.
rdf:langString У математиці, в таких галузях, як теорія порядку та комбінаторика, Теорема Ділуорса характеризує ширину довільної скінченної частково впорядкованої множини у термінах розбиття цього порядку на найменше число ланцюгів. Названа на честь математика . Антиланцюг у частково впорядкованій множині є множина елементів, будь-які два з яких не є порівнювані, і ланцюг є множина елементів, кожні два з яких є порівнювані. Теорема Ділуорса стверджує, що існує антиланцюг A, і розбиття даного порядку, що являє собою сімейство P ланцюгів, такі, що число ланцюгів у розбитті дорівнює потужності A. Коли це виконується, A повинен бути найбільшим антиланцюгом у порядку, оскільки будь-який антиланцюг не може мати більше одного елемента від кожного представника P. Аналогічно, P має бути найменшим сімейством ланцюгів, що являє собою розбиття даного порядку, оскільки будь-яке розбиття на ланцюги мусить мати принаймні один ланцюг для кожного елементу з A. Ширина часткового порядку визначається як спільний розмір A та P. Еквівалентне формулювання Теореми Ділуорса таке, у довільній частково впорядкованій множині, найбільше число елементів у будь-якому антиланцюзі дорівнює найменшому числу ланцюгів у будь-якому розбитті даної множини на ланцюги.
xsd:nonNegativeInteger 18435

data from the linked data cloud