Diagonalizable matrix
http://dbpedia.org/resource/Diagonalizable_matrix an entity of type: Thing
في الجبر الخطي، يقال عن مصفوفة مربعة A أنها قابلة للجدولة أو قابلة للتقطير إذا كانت مشابهة إلى مصفوفة قطرية، أي، إذا كان هناك مصفوفة انعكاسية P حيث أن P −1AP مصفوفة قطرية. إذا كانت V فضاء شعاعي - ، فإن T : V → V تدعى قابلة للجدولة إذا وجد أساس ل V بالنسبة لما هو ممثل في T بواسطة مصفوفة مجدولة.
rdf:langString
Als diagonalisierbare Matrix bezeichnet man im mathematischen Teilgebiet der linearen Algebra eine quadratische Matrix, die ähnlich zu einer Diagonalmatrix ist. Sie lässt sich mittels eines Basiswechsels (also der Konjugation mit einer regulären Matrix) in eine Diagonalmatrix transformieren. Das Konzept lässt sich auf Endomorphismen übertragen.
rdf:langString
선형대수학에서 대각화 가능 행렬(對角化可能行列, 영어: diagonalizable matrix)은 적절한 가역 행렬로의 켤레를 취하여 대각 행렬로 만들 수 있는 정사각 행렬이다.
rdf:langString
可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理。它们的特征值和特征向量是已知的,且其行列式可通过計算对角元素相乘獲得。 将矩阵对角化相当于是:找到一组基(即特征基),使得该线性变换在这组基下只是坐标轴方向上的伸缩变换(乘以一个标量),不同轴上的伸缩比例不同。所以,矩阵对角化之后,该线性变换的几何意义更容易理解。用对角矩阵表示的差分方程组或者微分方程组比较容易解出,因为每个等式只涉及一个未知函数。 表达一个算子为它的对角部分与它的幂零部分的和。
rdf:langString
У лінійній алгебрі, квадратна матриця A називається діагоналізовною (англ. diagonalizable) якщо вона подібна діагональній матриці, тобто, якщо існує P і її обернена такі, що P−1AP є діагональною матрицею. Якщо V є скінченновимірний векторний простір, тоді лінійне відображення T : V → V називається діагоналізовним якщо у V існує впорядкований базис, в якому T представлене діагональною матрицею. Діагоналізація — процес пошуку відповідної діагональної матриці для діагоналізовної матриці або лінійного відображення. Квадратна недіагоналізовна матриця називається .
rdf:langString
En àlgebra lineal, una matriu quadrada A s'anomena diagonalitzable si és semblant a una matriu diagonal, és a dir, si existeix una matriu invertible P tal que P−1AP és una matriu diagonal. Si V és un espai vectorial de dimensió finita, aleshores una aplicació lineal T : V → V s'anomena diagonalitzable si existeix una base de V respecte a la qual T es pot representar per una matriu diagonal. La diagonalització és el procés de trobar una matriu diagonal per una matriu diagonalitzable o per una aplicació lineal. Una matriu quadrada que hom no pot diagonalitzar s'anomena defectiva.
rdf:langString
V lineární algebře se čtvercové matici říká diagonizovatelná, pokud je podobná diagonální matici , tzn. pokud existuje taková regulární matice , pro kterou by platilo . Úzce souvisejícím pojmem je diagonalizovatelné lineární zobrazení: tak se označuje endomorfismus nad vektorovým prostorem , pokud existuje báze (zvaná diagonální báze), vzhledem ke které je reprezentováno diagonální maticí. Diagonalizace je proces hledání odpovídající diagonální matice a diagonální báze pro čtvercovou matici, resp. endomorfismus.
rdf:langString
In linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of . These definitions are equivalent: if has a matrix representation as above, then the column vectors of form a basis consisting of eigenvectors of , and the diagonal entries of are the corresponding eigenvalues of ; with respect to this eigenvector basis, is represented by . Diagonalization is the process of finding the above and .
rdf:langString
En álgebra lineal, una matriz cuadrada se dice que es diagonalizable si es semejante a una matriz diagonal. Es decir, si mediante un cambio de base puede reducirse a una forma diagonal. En este caso, la matriz podrá descomponerse de la forma donde es una matriz invertible cuyos vectores columna son vectores propios de y es una matriz diagonal formada por los valores propios de .
rdf:langString
En mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette propriété est équivalente à l'existence d'une base de vecteurs propres, ce qui permet de définir de manière analogue un endomorphisme diagonalisable d'un espace vectoriel. Le fait qu'une matrice soit diagonalisable dépend du corps dans lequel sont cherchées les valeurs propres, ce que confirme la caractérisation par le fait que le polynôme minimal soit scindé à racines simples. Article connexe : Diagonalisation.
rdf:langString
In matematica, e più precisamente in algebra lineare, una trasformazione lineare di uno spazio vettoriale è diagonalizzabile o semplice se esiste una base dello spazio rispetto alla quale la matrice di trasformazione è diagonale. In modo equivalente, una matrice quadrata è diagonalizzabile o semplice se è simile ad una matrice diagonale.
rdf:langString
In de lineaire algebra heet een vierkante matrix diagonaliseerbaar als er een inverteerbare matrix en een diagonaalmatrix bestaan zodanig dat: . Deze eigenschap is equivalent met te zeggen dat een basis van eigenvectoren heeft. Een symmetrische matrix is diagonaliseerbaar en de basis van eigenvectoren is zelfs orthonormaal. Er is dan ook een diagonaliserende matrix , die niet enkel inverteerbaar is, maar zelfs orthogonaal. In dat geval geldt dus: . De onderstaande tabel toont een overzicht van de mogelijkheden.
rdf:langString
Em álgebra linear, uma matriz quadrada A é chamada de diagonalizável se é semelhante a uma matriz diagonal, isto é, se existe uma matriz invertível P tal que P−1AP seja uma matriz diagonal. Se V é um espaço vetorial de dimensão finita n, então um operador linear T : V → V é chamado de diagonalizável se existe uma base ordenada de V, formada por n autovetores, em relação à qual T é representado por uma matriz diagonal. Diagonalização é o processo de encontrar uma matriz diagonal correspondente a uma matriz ou operador diagonalizável. Uma matriz quadrada que não é diagonalizável é chamada defectiva.
rdf:langString
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется .
rdf:langString
rdf:langString
مصفوفة قطورة
rdf:langString
Matriu diagonalitzable
rdf:langString
Diagonalizovatelná matice
rdf:langString
Diagonalisierbare Matrix
rdf:langString
Matriz diagonalizable
rdf:langString
Diagonalizable matrix
rdf:langString
Diagonalizzabilità
rdf:langString
Matrice diagonalisable
rdf:langString
대각화 가능 행렬
rdf:langString
Diagonaliseerbare matrix
rdf:langString
Matriz diagonalizável
rdf:langString
Диагонализируемая матрица
rdf:langString
Діагоналізовна матриця
rdf:langString
可对角化矩阵
xsd:integer
246325
xsd:integer
1099314002
rdf:langString
En àlgebra lineal, una matriu quadrada A s'anomena diagonalitzable si és semblant a una matriu diagonal, és a dir, si existeix una matriu invertible P tal que P−1AP és una matriu diagonal. Si V és un espai vectorial de dimensió finita, aleshores una aplicació lineal T : V → V s'anomena diagonalitzable si existeix una base de V respecte a la qual T es pot representar per una matriu diagonal. La diagonalització és el procés de trobar una matriu diagonal per una matriu diagonalitzable o per una aplicació lineal. Una matriu quadrada que hom no pot diagonalitzar s'anomena defectiva. Les matrius diagonalitzables i les aplicacions lineals diagonalitzables són de particular interès perquè les matrius diagonals són especialment senzilles de manipular: hom coneix immediatament els seus valors propis i vectors propis, i es pot calcular la n-èsima potència d'una matriu simplement calculant la n-sima potència de les entrades de la diagonal. Geomètricament, una matriu diagonalitzable és una (o dilatació anisotròpica) — realitza una de l'espai, com faria una homotècia, però amb un factor diferent en cada direcció, segons els factors d'escala de les entrades de la diagonal.
rdf:langString
V lineární algebře se čtvercové matici říká diagonizovatelná, pokud je podobná diagonální matici , tzn. pokud existuje taková regulární matice , pro kterou by platilo . Úzce souvisejícím pojmem je diagonalizovatelné lineární zobrazení: tak se označuje endomorfismus nad vektorovým prostorem , pokud existuje báze (zvaná diagonální báze), vzhledem ke které je reprezentováno diagonální maticí. Diagonalizace je proces hledání odpovídající diagonální matice a diagonální báze pro čtvercovou matici, resp. endomorfismus. Čtvercová matice, resp. endomorfismus, které nejsou diagonalizovatelné, se označují jako defektní. Diagonizovatelné matice a zobrazení jsou předmětem zájmu, protože s diagonálními maticemi se velmi snadno pracuje: jejich vlastní čísla a vlastní vektory jsou zřejmé a umocňování diagonální matice je také snadné, protože stačí umocnit jednotlivé prvky na diagonále matice. V případě, že matice není diagonalizovatelná, tyto vlastnosti do jisté míry supluje tzv. Jordanův tvar, který mají všechny matice. Pojmy diagonalizovatelnost a diagonalizace se užívají i v kontextu bilineárních a seskvilineárních forem, jejich matice ovšem nejsou v různých bázích podobné, ale kongruentní. Bázi, ve které je bilineární forma diagonální, se říká polární báze a kvůli zmíněným rozdílům v transformaci forem a zobrazení je obecně jiná než diagonální báze zobrazení. Důležitou výjimku ovšem tvoří případy, kdy je ortogonální a platí . Tímto případem se podrobně zabývá .
rdf:langString
في الجبر الخطي، يقال عن مصفوفة مربعة A أنها قابلة للجدولة أو قابلة للتقطير إذا كانت مشابهة إلى مصفوفة قطرية، أي، إذا كان هناك مصفوفة انعكاسية P حيث أن P −1AP مصفوفة قطرية. إذا كانت V فضاء شعاعي - ، فإن T : V → V تدعى قابلة للجدولة إذا وجد أساس ل V بالنسبة لما هو ممثل في T بواسطة مصفوفة مجدولة.
rdf:langString
Als diagonalisierbare Matrix bezeichnet man im mathematischen Teilgebiet der linearen Algebra eine quadratische Matrix, die ähnlich zu einer Diagonalmatrix ist. Sie lässt sich mittels eines Basiswechsels (also der Konjugation mit einer regulären Matrix) in eine Diagonalmatrix transformieren. Das Konzept lässt sich auf Endomorphismen übertragen.
rdf:langString
In linear algebra, a square matrix is called diagonalizable or non-defective if it is similar to a diagonal matrix, i.e., if there exists an invertible matrix and a diagonal matrix such that , or equivalently . (Such , are not unique.) For a finite-dimensional vector space , a linear map is called diagonalizable if there exists an ordered basis of consisting of eigenvectors of . These definitions are equivalent: if has a matrix representation as above, then the column vectors of form a basis consisting of eigenvectors of , and the diagonal entries of are the corresponding eigenvalues of ; with respect to this eigenvector basis, is represented by . Diagonalization is the process of finding the above and . Diagonalizable matrices and maps are especially easy for computations, once their eigenvalues and eigenvectors are known. One can raise a diagonal matrix to a power by simply raising the diagonal entries to that power, and the determinant of a diagonal matrix is simply the product of all diagonal entries; such computations generalize easily to . Geometrically, a diagonalizable matrix is an inhomogeneous dilation (or anisotropic scaling) — it scales the space, as does a homogeneous dilation, but by a different factor along each eigenvector axis, the factor given by the corresponding eigenvalue. A square matrix that is not diagonalizable is called defective. It can happen that a matrix with real entries is defective over the real numbers, meaning that is impossible for any invertible and diagonal with real entries, but it is possible with complex entries, so that is diagonalizable over the complex numbers. For example, this is the case for a generic rotation matrix. Many results for diagonalizable matrices hold only over an algebraically closed field (such as the complex numbers). In this case, diagonalizable matrices are dense in the space of all matrices, which means any defective matrix can be deformed into a diagonalizable matrix by a small perturbation; and the Jordan normal form theorem states that any matrix is uniquely the sum of a diagonalizable matrix and a nilpotent matrix. Over an algebraically closed field, diagonalizable matrices are equivalent to semi-simple matrices.
rdf:langString
En álgebra lineal, una matriz cuadrada se dice que es diagonalizable si es semejante a una matriz diagonal. Es decir, si mediante un cambio de base puede reducirse a una forma diagonal. En este caso, la matriz podrá descomponerse de la forma donde es una matriz invertible cuyos vectores columna son vectores propios de y es una matriz diagonal formada por los valores propios de . Si la matriz es semejante ortogonalmente a una matriz diagonal, es decir, si la matriz P es ortogonal se dice entonces que la matriz A es diagonalizable ortogonalmente, pudiendo escribirse como . El teorema espectral garantiza que cualquier matriz cuadrada simétrica con coeficientes reales es ortogonalmente diagonalizable. En este caso P está formada por una base ortonormal de vectores propios de la matriz siendo los valores propios reales. La matriz P es por tanto ortogonal y los vectores filas de son los vectores columnas de P.
rdf:langString
En mathématiques, une matrice diagonalisable est une matrice carrée semblable à une matrice diagonale. Cette propriété est équivalente à l'existence d'une base de vecteurs propres, ce qui permet de définir de manière analogue un endomorphisme diagonalisable d'un espace vectoriel. Le fait qu'une matrice soit diagonalisable dépend du corps dans lequel sont cherchées les valeurs propres, ce que confirme la caractérisation par le fait que le polynôme minimal soit scindé à racines simples. Cette caractérisation permet notamment de montrer que les projecteurs sont toujours diagonalisables, ainsi que les involutions si le corps des coefficients est de caractéristique différente de 2. Plus généralement, les endomorphismes et matrices d'ordre fini sont diagonalisables sur le corps des complexes. Au contraire, un endomorphisme nilpotent non nul ne peut pas être diagonalisable. Les matrices réelles symétriques sont diagonalisables par une matrice orthogonale. Plus généralement les matrices normales, parmi lesquelles les matrices hermitiennes, antihermitiennes et unitaires sont diagonalisables à l'aide d'une matrice unitaire, ce qui conduit au théorème spectral. La diagonalisation est la détermination effective d'une matrice de passage transformant une matrice diagonalisable en une matrice diagonale, ou la décomposition d'un espace vectoriel en une somme directe de droites stables par un endomorphisme. Article connexe : Diagonalisation.
rdf:langString
In matematica, e più precisamente in algebra lineare, una trasformazione lineare di uno spazio vettoriale è diagonalizzabile o semplice se esiste una base dello spazio rispetto alla quale la matrice di trasformazione è diagonale. In modo equivalente, una matrice quadrata è diagonalizzabile o semplice se è simile ad una matrice diagonale. Una trasformazione lineare è diagonalizzabile se esistono "assi" passanti per l'origine la cui direzione rimane invariata nella trasformazione stessa: ognuno di tali assi è un autospazio relativo ad un autovettore della trasformazione, e la trasformazione effettua una omotetia. Diagonalizzare una trasformazione significa porsi in un sistema di riferimento che rimane "solidale" con essa, e la trasformazione risulta completamente definita quando si conosce il suo comportamento sugli assi del sistema.
rdf:langString
선형대수학에서 대각화 가능 행렬(對角化可能行列, 영어: diagonalizable matrix)은 적절한 가역 행렬로의 켤레를 취하여 대각 행렬로 만들 수 있는 정사각 행렬이다.
rdf:langString
In de lineaire algebra heet een vierkante matrix diagonaliseerbaar als er een inverteerbare matrix en een diagonaalmatrix bestaan zodanig dat: . Deze eigenschap is equivalent met te zeggen dat een basis van eigenvectoren heeft. Een symmetrische matrix is diagonaliseerbaar en de basis van eigenvectoren is zelfs orthonormaal. Er is dan ook een diagonaliserende matrix , die niet enkel inverteerbaar is, maar zelfs orthogonaal. In dat geval geldt dus: . Een vierkante niet-symmetrische matrix is diagonaliseerbaar indien er geen ontaarding van de eigenruimten optreedt. Dit betekent dat voor elke eigenruimte de dimensie gelijk moet zijn aan de multipliciteit van de eigenwaarde. Als alle eigenwaarden enkelvoudig zijn, wordt hier automatisch voldaan en kan de matrix gediagonaliseerd worden. Bij meervoudige eigenwaarden kan het dus zijn dat de matrix al dan niet diagonaliseerbaar is. De onderstaande tabel toont een overzicht van de mogelijkheden. Concreet bevat de diagonaliserende matrix als kolommen de coördinaten van de eigenvectoren, en op de hoofddiagonaal van de diagonaalvorm staan de eigenwaarden. Hierbij moet in en dezelfde volgorde van eigenvectoren en eigenwaarden worden aangehouden. Het element op de hoofddiagonaal van moet dus een eigenwaarde zijn en die eigenwaarde behoort bij de eigenvector die zich in de k-de kolom van bevindt. Doordat men de nummering van eigenvectoren en bijhorende eigenwaarden vrij kan kiezen zijn er dus meerdere oplossingen voor en te vinden, door in beide matrices op dezelfde manier de volgorde van de kolommen te herschikken.
rdf:langString
Em álgebra linear, uma matriz quadrada A é chamada de diagonalizável se é semelhante a uma matriz diagonal, isto é, se existe uma matriz invertível P tal que P−1AP seja uma matriz diagonal. Se V é um espaço vetorial de dimensão finita n, então um operador linear T : V → V é chamado de diagonalizável se existe uma base ordenada de V, formada por n autovetores, em relação à qual T é representado por uma matriz diagonal. Diagonalização é o processo de encontrar uma matriz diagonal correspondente a uma matriz ou operador diagonalizável. Uma matriz quadrada que não é diagonalizável é chamada defectiva. Matrizes e operadores diagonalizáveis são de interesse porque matrizes diagonais são especialmente fáceis de manusear; uma vez que seus autovalores e autovetores sejam conhecidos, pode-se elevar uma matriz diagonal a uma certa potência simplesmente elevando as entradas da diagonal à mesma potência, e o determinante de uma matriz diagonal é simplesmente o produto de todas as entradas da diagonal. Geometricamente, uma matriz diagonalizável é uma dilatação não homogênea (ou mudança de escala anisotrópica) — ela muda a escala do espaço, tal como uma dilatação homogênea, mas por um fator diferente, em cada direção, determinados pelos fatores de escala em cada eixo (entradas da diagonal).
rdf:langString
可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。如果 V 是有限维度的向量空间,则线性映射 T : V → V 被称为可对角化的,如果存在 V 的一个基,T 关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。 可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理。它们的特征值和特征向量是已知的,且其行列式可通过計算对角元素相乘獲得。 将矩阵对角化相当于是:找到一组基(即特征基),使得该线性变换在这组基下只是坐标轴方向上的伸缩变换(乘以一个标量),不同轴上的伸缩比例不同。所以,矩阵对角化之后,该线性变换的几何意义更容易理解。用对角矩阵表示的差分方程组或者微分方程组比较容易解出,因为每个等式只涉及一个未知函数。 表达一个算子为它的对角部分与它的幂零部分的和。
rdf:langString
В линейной алгебре квадратная матрица A называется диагонализируемой, если она подобна диагональной матрице, то есть если существует невырожденная матрица P, такая что P−1AP является диагональной матрицей. Если V — конечномерное векторное пространство, то линейное отображение T : V → V называется диагонализируемым, если существует упорядоченный базис в V, при котором T представляется в виде диагональной матрицы. Диагонализацией называется процесс нахождения соответствующей диагональной матрицы для диагонализируемой матрицы или линейного отображения. Квадратная матрица, которую нельзя диагонализировать, называется . Диагонализируемые матрицы и отображения интересны, поскольку с диагональными матрицами просто работать: собственные значения и векторы известны, возведение в степень осуществляется возведением в степень диагональных элементов, определитель равен произведению диагональных элементов. С геометрической точки зрения диагонализируемая матрица представляет собой неоднородное масштабирование: в каждом направлении растяжение происходит в общем случае с разным коэффициентом в зависимости от числа на диагонали.
rdf:langString
У лінійній алгебрі, квадратна матриця A називається діагоналізовною (англ. diagonalizable) якщо вона подібна діагональній матриці, тобто, якщо існує P і її обернена такі, що P−1AP є діагональною матрицею. Якщо V є скінченновимірний векторний простір, тоді лінійне відображення T : V → V називається діагоналізовним якщо у V існує впорядкований базис, в якому T представлене діагональною матрицею. Діагоналізація — процес пошуку відповідної діагональної матриці для діагоналізовної матриці або лінійного відображення. Квадратна недіагоналізовна матриця називається .
rdf:langString
#F5FFFA
rdf:langString
#0073CF
xsd:integer
6
rdf:langString
:
xsd:nonNegativeInteger
24393