Derived category

http://dbpedia.org/resource/Derived_category an entity of type: Company

Die derivierte Kategorie einer abelschen Kategorie ist ein wichtiges Objekt in der modernen homologischen Algebra. Sie wurde durch Grothendiecks Student Verdier eingeführt. rdf:langString
호몰로지 대수학에서 유도 범주(誘導範疇, 영어: derived category)는 사슬 복합체의 범주에서, 호몰로지들이 같은 사슬 복합체들을 서로 동형으로 간주하도록 변형한 범주이다. rdf:langString
导出范畴是同调代数中的一种构造。导出范畴的概念推广并深化了传统同调代数中导出函子的理论。这一构造是格罗滕迪克在20世纪60年代初提出的,他的学生让-路易·韦迪耶在其指导下发展了相关理论。今天,导出范畴被广泛应用于代数几何和D-模理论。 rdf:langString
In mathematics, the derived category D(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. rdf:langString
La catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 4½, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la (en) qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales. rdf:langString
数学においてアーベル圏 の導来圏(どうらいけん、英: Derived category、仏: Catégorie dérivée) はホモロジー代数から構成されるもので、 上に定義された導来函手の理論を精密化するとともに、ある意味で単純化するべく導入された。その構成は基本的には次の様に進む:まず圏 の対象は の双対鎖複体であり、次に2つのその様な双対鎖複体の間にチェイン写像が存在してコホモロジーを取った段階で同型を誘導する場合に同型であると考えるのである。このとき、導来函手は双対鎖複体に対して定義され、の考えを精密化したものとなる。これらの定義により、煩雑なスペクトル系列を用いて(完全に忠実ではなく)記述されるよりほか無かった式は劇的に簡素化される。 rdf:langString
rdf:langString Derived category
rdf:langString Derivierte Kategorie
rdf:langString Catégorie dérivée
rdf:langString 유도 범주
rdf:langString 導来圏
rdf:langString 导出范畴
xsd:integer 985897
xsd:integer 1111688495
rdf:langString M.G.M. van
rdf:langString D/d031280
rdf:langString Doorn
rdf:langString Derived category
rdf:langString Die derivierte Kategorie einer abelschen Kategorie ist ein wichtiges Objekt in der modernen homologischen Algebra. Sie wurde durch Grothendiecks Student Verdier eingeführt.
rdf:langString In mathematics, the derived category D(A) of an abelian category A is a construction of homological algebra introduced to refine and in a certain sense to simplify the theory of derived functors defined on A. The construction proceeds on the basis that the objects of D(A) should be chain complexes in A, with two such chain complexes considered isomorphic when there is a chain map that induces an isomorphism on the level of homology of the chain complexes. Derived functors can then be defined for chain complexes, refining the concept of hypercohomology. The definitions lead to a significant simplification of formulas otherwise described (not completely faithfully) by complicated spectral sequences. The development of the derived category, by Alexander Grothendieck and his student Jean-Louis Verdier shortly after 1960, now appears as one terminal point in the explosive development of homological algebra in the 1950s, a decade in which it had made remarkable strides. The basic theory of Verdier was written down in his dissertation, published finally in 1996 in (a summary had earlier appeared in SGA 4½). The axiomatics required an innovation, the concept of triangulated category, and the construction is based on localization of a category, a generalization of localization of a ring. The original impulse to develop the "derived" formalism came from the need to find a suitable formulation of Grothendieck's coherent duality theory. Derived categories have since become indispensable also outside of algebraic geometry, for example in the formulation of the theory of D-modules and microlocal analysis. Recently derived categories have also become important in areas nearer to physics, such as D-branes and mirror symmetry.
rdf:langString La catégorie dérivée d'une catégorie est une construction, originellement introduite par Jean-Louis Verdier dans sa thèse et reprise dans SGA 4½, qui permet notamment de raffiner et simplifier la théorie des foncteurs dérivés. Elle a amené à plusieurs développements importants, ainsi que des reformulations élégantes par exemple de la théorie des D-modules et des preuves de la (en) qui généralise le vingt-et-unième problème de Hilbert. En particulier, le langage des catégories dérivées permet de simplifier des problèmes exprimés en termes de suites spectrales. Cette construction met également à jour la (en), une généralisation de celle de Poincaré et de celle d'Alexander.
rdf:langString 数学においてアーベル圏 の導来圏(どうらいけん、英: Derived category、仏: Catégorie dérivée) はホモロジー代数から構成されるもので、 上に定義された導来函手の理論を精密化するとともに、ある意味で単純化するべく導入された。その構成は基本的には次の様に進む:まず圏 の対象は の双対鎖複体であり、次に2つのその様な双対鎖複体の間にチェイン写像が存在してコホモロジーを取った段階で同型を誘導する場合に同型であると考えるのである。このとき、導来函手は双対鎖複体に対して定義され、の考えを精密化したものとなる。これらの定義により、煩雑なスペクトル系列を用いて(完全に忠実ではなく)記述されるよりほか無かった式は劇的に簡素化される。 導来圏の発展は、アレクサンドル・グロタンディークと彼の学生のにより1960年代初頭になされ、ホモロジー代数が長足の進歩を遂げた1950年代における爆発的な展開の一つの到達点であると現在ではみなされている。ヴェルディエによる理論の基本部分は博士論文に纏められたが、1996年になってようやくAstérisque(要約はずっと早くにに収録されていた)に出版された。その定式化には革新的な発想であるの概念が必要であり、その構成は環の局所化を一般化したに基づく。"導来"形式の展開への原動力となった欲求は、グロタンディークによるの理論のなんらかの意味での定式化を行うことであった。導来圏は以後、代数幾何学以外の領域に於いてさえ、たとえば、D-加群や超局所解析でも不可欠な概念となっている。さらに、近年は、ミラー対称性やの定式化という物理学に近い領域でも、導来圏が重要な役割を果たすようになっている。
rdf:langString 호몰로지 대수학에서 유도 범주(誘導範疇, 영어: derived category)는 사슬 복합체의 범주에서, 호몰로지들이 같은 사슬 복합체들을 서로 동형으로 간주하도록 변형한 범주이다.
rdf:langString 导出范畴是同调代数中的一种构造。导出范畴的概念推广并深化了传统同调代数中导出函子的理论。这一构造是格罗滕迪克在20世纪60年代初提出的,他的学生让-路易·韦迪耶在其指导下发展了相关理论。今天,导出范畴被广泛应用于代数几何和D-模理论。
xsd:nonNegativeInteger 29403

data from the linked data cloud