Data analysis techniques for fraud detection

http://dbpedia.org/resource/Data_analysis_techniques_for_fraud_detection an entity of type: Company

Fraud represents a significant problem for governments and businesses and specialized analysis techniques for discovering fraud using them are required. Some of these methods include knowledge discovery in databases (KDD), data mining, machine learning and statistics. They offer applicable and successful solutions in different areas of electronic fraud crimes. rdf:langString
rdf:langString Data analysis techniques for fraud detection
xsd:integer 24932989
xsd:integer 1124249144
rdf:langString Fraud represents a significant problem for governments and businesses and specialized analysis techniques for discovering fraud using them are required. Some of these methods include knowledge discovery in databases (KDD), data mining, machine learning and statistics. They offer applicable and successful solutions in different areas of electronic fraud crimes. In general, the primary reason to use data analytics techniques is to tackle fraud since many internal control systems have serious weaknesses. For example, the currently prevailing approach employed by many law enforcement agencies to detect companies involved in potential cases of fraud consists in receiving circumstantial evidence or complaints from whistleblowers. As a result, a large number of fraud cases remain undetected and unprosecuted. In order to effectively test, detect, validate, correct error and monitor control systems against fraudulent activities, businesses entities and organizations rely on specialized data analytics techniques such as data mining, data matching, the sounds like function, regression analysis, clustering analysis, and gap analysis. Techniques used for fraud detection fall into two primary classes: statistical techniques and artificial intelligence.
xsd:nonNegativeInteger 18322

data from the linked data cloud