Curse of dimensionality

http://dbpedia.org/resource/Curse_of_dimensionality

차원의 저주(次元의 詛呪, 영어: Curse of dimensionality)는 데이터의 차원이 높아질 수록 알고리즘의 실행이 아주 까다로워지는 일이다. rdf:langString
次元の呪い(じげんののろい、英: The curse of dimensionality)という言葉は、リチャード・ベルマンが使ったもので、(数学的)空間の次元が増えるのに対応して問題の算法が指数関数的に大きくなることを表している。 例えば、単位区間をサンプリングするには100個の点を等間隔で、かつ点間の距離を 0.01 以上にならないように配置すれば十分である。同じようなサンプリングを10次元の単位超立方体について行おうとすると、必要な点の数は 1020 にもなる。したがって、10次元の超立方体はある意味では単位区間の1018倍の大きさとも言える。 高次元ユークリッド空間の広大さを示す別の例として、単位球と単位立方体の大きさを次元を上げながら比較してみればよい。次元が高くなると、単位球は単位立方体に比較して小さくなっていく。したがってある意味では、ほとんど全ての高次元空間は中心から遠く、言い換えれば、高次元単位空間はほとんど超立方体の角で構成されており、「中間」がない。このことは、カイ二乗分布を理解する上で重要である。 rdf:langString
تشير لعنة الأبعاد إلى العديد من الظواهر التي تنشأ عند تحليل وتنظيم البيانات في لا تحدث في البيئات منخفضة الأبعاد مثل الفضاء المادي ثلاثي الأبعاد المعتاد يومياً. تحدث الظواهر الملعونة في مجالات مثل التحليل العددي، أخذ العينات، التوافيقيات، التعلم الآلي، استخراج البيانات وقواعد البيانات. السمة الشائعة لهذه المسائل هي أنه عندما يزداد البعد، يزداد حجم الفضاء بسرعة كبيرة بحيث تصبح البيانات المتاحة قليلة. هذا التفرقة يمثل مشكلة بالنسبة لأي طريقة تتطلب دلالة إحصائية. من أجل الحصول على نتيجة إحصائية سليمة وموثوق بها، فإن كمية البيانات اللازمة لدعم النتيجة غالبا ما تنمو باطراد مع البعد. أيضًا، يعتمد تنظيم البيانات والبحث عنها غالبًا على اكتشاف المناطق التي تشكل فيها الكائنات مجموعات لها نفس الخصائص؛ ومع ذلك، في البيانات ، تبدو جميع الكائنات متناثرة ومختلفة في نواح كثيرة، مما يمنع استراتيجيات تنظيم rdf:langString
Fluch der Dimensionalität ist ein Begriff, der von Richard Bellman eingeführt wurde, um den rapiden Anstieg im Volumen beim Hinzufügen weiterer Dimensionen in einen mathematischen Raum zu beschreiben. Leo Breiman beschreibt beispielhaft, dass 100 Beobachtungen den eindimensionalen Raum der reellen Zahlen zwischen 0 und 1 gut abdecken. Aus diesen Beobachtungen lässt sich ein Histogramm berechnen und Schlussfolgerungen lassen sich ziehen. Werden vergleichsweise in einem 10-dimensionalen Raum der gleichen Art (jede Dimension kann Werte zwischen 0 und 1 annehmen) 100 Stichproben gesammelt, sind dies isolierte Punkte, die den Raum nicht ausreichend abdecken, um sinnvolle Aussagen über diesen Raum zu treffen. Um eine ähnliche Abdeckung wie im eindimensionalen Raum zu erreichen, müssen 10010=1020 rdf:langString
The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience. The expression was coined by Richard E. Bellman when considering problems in dynamic programming. rdf:langString
En matemáticas y estadística, la maldición de la dimensión (también conocida como efecto Hughes​) se refiere a los diversos fenómenos que surgen al analizar y organizar datos de espacios de múltiples dimensiones (cientos y miles de dimensiones) que no suceden en el espacio físico descrito generalmente con solo tres dimensiones. El término fue acuñado por Richard Bellman cuando estaba considerando los problemas de la programación dinámica.​​ rdf:langString
Le fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. rdf:langString
Przekleństwo wymiarowości odnosi się do wielu właściwości przestrzeni wielowymiarowych i problemów kombinatorycznych. Przede wszystkim dotyczy wykładniczego wzrostu niezbędnych danych eksperymentalnych w zależności od wymiaru przestrzeni przy rozwiązywaniu problemów probabilistyczno-statystycznego rozpoznawania wzorców, uczenia maszynowego, klasyfikacji i analizy dyskryminacyjnej. Dotyczy to również wykładniczego wzrostu liczby wariantów w kombinatorycznych problemach w zależności od wielkości początkowych danych, co prowadzi do odpowiedniego zwiększenia złożoności algorytmów ponownego wyboru. Przekleństwo dotyczy również ciągłych metod optymalizacji, a także złożoności wielowymiarowej funkcji celu. rdf:langString
Прокляття розмірності (англ. curse of dimensionality) вказує на різні явища, які виникають при аналізі та роботі з даними в багатовимірних просторах (часто це сотні або тисячі вимірів). Ці явища не зустрічаються в маловимірних випадках, таких як тривимірний фізичний простір з яким ми стикаємось щодня. Термін спочатку використав Річард Беллман для задач динамічної оптимізації. rdf:langString
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных данных, что приводит к соответствующему росту сложности переборных алгоритмов. «Проклятие» действует и на непрерывные оптимизационные методы в силу усложнения многомерной целевой функции. В более широком смысле термин применяется по отношению ко всем «неудобным» или необычным свойствам многомерн rdf:langString
维数灾难(英語:curse of dimensionality,又名维度的詛咒)是一个最早由理查德·贝尔曼(Richard E. Bellman)在考虑优化问题时首次提出来的术语,用来描述当(数学)空间维度增加时,分析和组织高维空间(通常有成百上千维),因体积指数增加而遇到各种问题场景。这样的难题在低维空间中不会遇到,如物理空间通常只用三维来建模。 举例来说,100个平均分布的点能把一个单位区间以每个点距离不超过0.01采样;而当维度增加到10后,如果以相邻点距离不超过0.01小方格采样一单位超正方体,则需要1020 个采样点:所以,这个10维的超正方体也可以说是比单位区间大1018倍。(这个是理查德·贝尔曼所举的例子) 在很多领域中,如采样、组合数学、机器学习和数据挖掘都有提及到这个名字的现象。这些问题的共同特色是当维数提高时,空间的体积提高太快,因而可用数据变得很稀疏。稀疏性对于任何要求有统计学意义的方法而言都是一个问题,为了获得在统计学上正确并且有可靠的结果,用来支撑这一结果所需要的数据量通常随着维数的提高而呈指数级增长。而且,在组织和搜索数据时也有赖于检测对象区域,这些区域中的对象通过相似度属性而形成分组。然而在高维空间中,所有的数据都很稀疏,从很多角度看都不相似,因而平常使用的数据组织策略变得极其低效。 rdf:langString
rdf:langString لعنه الأبعاد
rdf:langString Fluch der Dimensionalität
rdf:langString Curse of dimensionality
rdf:langString Maldición de la dimensión
rdf:langString Fléau de la dimension
rdf:langString 次元の呪い
rdf:langString 차원의 저주
rdf:langString Przekleństwo wymiarowości
rdf:langString Проклятие размерности
rdf:langString Прокляття розмірності
rdf:langString 维数灾难
xsd:integer 787776
xsd:integer 1124812308
rdf:langString تشير لعنة الأبعاد إلى العديد من الظواهر التي تنشأ عند تحليل وتنظيم البيانات في لا تحدث في البيئات منخفضة الأبعاد مثل الفضاء المادي ثلاثي الأبعاد المعتاد يومياً. تحدث الظواهر الملعونة في مجالات مثل التحليل العددي، أخذ العينات، التوافيقيات، التعلم الآلي، استخراج البيانات وقواعد البيانات. السمة الشائعة لهذه المسائل هي أنه عندما يزداد البعد، يزداد حجم الفضاء بسرعة كبيرة بحيث تصبح البيانات المتاحة قليلة. هذا التفرقة يمثل مشكلة بالنسبة لأي طريقة تتطلب دلالة إحصائية. من أجل الحصول على نتيجة إحصائية سليمة وموثوق بها، فإن كمية البيانات اللازمة لدعم النتيجة غالبا ما تنمو باطراد مع البعد. أيضًا، يعتمد تنظيم البيانات والبحث عنها غالبًا على اكتشاف المناطق التي تشكل فيها الكائنات مجموعات لها نفس الخصائص؛ ومع ذلك، في البيانات ، تبدو جميع الكائنات متناثرة ومختلفة في نواح كثيرة، مما يمنع استراتيجيات تنظيم البيانات الشائعة من أن تكون فعالة.
rdf:langString The curse of dimensionality refers to various phenomena that arise when analyzing and organizing data in high-dimensional spaces that do not occur in low-dimensional settings such as the three-dimensional physical space of everyday experience. The expression was coined by Richard E. Bellman when considering problems in dynamic programming. Dimensionally cursed phenomena occur in domains such as numerical analysis, sampling, combinatorics, machine learning, data mining and databases. The common theme of these problems is that when the dimensionality increases, the volume of the space increases so fast that the available data become sparse. In order to obtain a reliable result, the amount of data needed often grows exponentially with the dimensionality. Also, organizing and searching data often relies on detecting areas where objects form groups with similar properties; in high dimensional data, however, all objects appear to be sparse and dissimilar in many ways, which prevents common data organization strategies from being efficient.
rdf:langString Fluch der Dimensionalität ist ein Begriff, der von Richard Bellman eingeführt wurde, um den rapiden Anstieg im Volumen beim Hinzufügen weiterer Dimensionen in einen mathematischen Raum zu beschreiben. Leo Breiman beschreibt beispielhaft, dass 100 Beobachtungen den eindimensionalen Raum der reellen Zahlen zwischen 0 und 1 gut abdecken. Aus diesen Beobachtungen lässt sich ein Histogramm berechnen und Schlussfolgerungen lassen sich ziehen. Werden vergleichsweise in einem 10-dimensionalen Raum der gleichen Art (jede Dimension kann Werte zwischen 0 und 1 annehmen) 100 Stichproben gesammelt, sind dies isolierte Punkte, die den Raum nicht ausreichend abdecken, um sinnvolle Aussagen über diesen Raum zu treffen. Um eine ähnliche Abdeckung wie im eindimensionalen Raum zu erreichen, müssen 10010=1020 Stichproben gezogen werden, was einen wesentlich höheren Aufwand zur Folge hat.
rdf:langString En matemáticas y estadística, la maldición de la dimensión (también conocida como efecto Hughes​) se refiere a los diversos fenómenos que surgen al analizar y organizar datos de espacios de múltiples dimensiones (cientos y miles de dimensiones) que no suceden en el espacio físico descrito generalmente con solo tres dimensiones. Hay múltiples fenómenos referidos con este nombre en campos tales como el análisis numérico, el muestreo, la combinatoria, el aprendizaje automático, la minería de datos y bases de datos. La causa común de estos problemas es que cuando aumenta la dimensionalidad, el volumen del espacio aumenta exponencialmente haciendo que los datos disponibles se vuelven dispersos. Esta dispersión es problemática para cualquier método que requiera significación estadística. Con el fin de obtener un resultado estadísticamente sólido y fiable, la cantidad de datos necesarios para mantener el resultado a menudo debe crecer también exponencialmente con la dimensionalidad. Además la organización y búsqueda de datos a menudo se basa en la detección de las áreas donde los objetos forman grupos con propiedades similares, y en datos de alta dimensión, sin embargo todos los objetos parecen ser escasos y diferentes en muchos aspectos, lo que impide que las estrategias de organización de datos comunes sean eficientes. El término fue acuñado por Richard Bellman cuando estaba considerando los problemas de la programación dinámica.​​
rdf:langString Le fléau de la dimension ou malédiction de la dimension (curse of dimensionality) est un terme inventé par Richard Bellman en 1961 pour désigner divers phénomènes qui ont lieu lorsque l'on cherche à analyser ou organiser des données dans des espaces de grande dimension alors qu'ils n'ont pas lieu dans des espaces de dimension moindre. Plusieurs domaines sont concernés et notamment l'apprentissage automatique, la fouille de données, les bases de données, l'analyse numérique ou encore l'échantillonnage. L'idée générale est que lorsque le nombre de dimensions augmente, le volume de l'espace croît rapidement si bien que les données se retrouvent « isolées » et deviennent éparses. Cela est problématique pour les méthodes nécessitant un nombre significatif de données pour être valides, les rendant alors peu efficaces voire inopérantes.
rdf:langString 차원의 저주(次元의 詛呪, 영어: Curse of dimensionality)는 데이터의 차원이 높아질 수록 알고리즘의 실행이 아주 까다로워지는 일이다.
rdf:langString 次元の呪い(じげんののろい、英: The curse of dimensionality)という言葉は、リチャード・ベルマンが使ったもので、(数学的)空間の次元が増えるのに対応して問題の算法が指数関数的に大きくなることを表している。 例えば、単位区間をサンプリングするには100個の点を等間隔で、かつ点間の距離を 0.01 以上にならないように配置すれば十分である。同じようなサンプリングを10次元の単位超立方体について行おうとすると、必要な点の数は 1020 にもなる。したがって、10次元の超立方体はある意味では単位区間の1018倍の大きさとも言える。 高次元ユークリッド空間の広大さを示す別の例として、単位球と単位立方体の大きさを次元を上げながら比較してみればよい。次元が高くなると、単位球は単位立方体に比較して小さくなっていく。したがってある意味では、ほとんど全ての高次元空間は中心から遠く、言い換えれば、高次元単位空間はほとんど超立方体の角で構成されており、「中間」がない。このことは、カイ二乗分布を理解する上で重要である。
rdf:langString Przekleństwo wymiarowości odnosi się do wielu właściwości przestrzeni wielowymiarowych i problemów kombinatorycznych. Przede wszystkim dotyczy wykładniczego wzrostu niezbędnych danych eksperymentalnych w zależności od wymiaru przestrzeni przy rozwiązywaniu problemów probabilistyczno-statystycznego rozpoznawania wzorców, uczenia maszynowego, klasyfikacji i analizy dyskryminacyjnej. Dotyczy to również wykładniczego wzrostu liczby wariantów w kombinatorycznych problemach w zależności od wielkości początkowych danych, co prowadzi do odpowiedniego zwiększenia złożoności algorytmów ponownego wyboru. Przekleństwo dotyczy również ciągłych metod optymalizacji, a także złożoności wielowymiarowej funkcji celu. Określenia „przekleństwo wymiarowości” po raz pierwszy użyto w opracowaniu w wydanym w 1961 roku przez Richarda Ernesta Bellmana „Adaptive control processes”. Pojęcie występowało również w pracach: White’a (1989), Bishopa (1995). Wystąpiło również pod pojęciem „zjawisko pustej przestrzeni” (ang. empty space phenomenon) w pracach Scotta i Thompsona (1983), Silvermana (1986). Przekleństwo wymiarowości odnosi się do sytuacji, gdy poprawna klasyfikacja obiektów, wykorzystując pełny zbiór danych, jest niemal niemożliwa, a wielość charakterystyk w wektorze skutkuje wzrostem liczby parametrów, co skutkuje wzrostem złożoność klasyfikatora. Rośnie również ryzyko przeuczenia (ang. overfitting) i tym samym spadku zdolności uogólniających (ang. generalization) klasyfikatora. Jest to przyczyną powszechnego zmniejszenia wymiarowości cech. Przyczyną problemów jest identyfikacja podzbioru cech, który posłuży poprawnej klasyfikacji danych przez algorytm. Zjawisko to stanowi poważną przeszkodę dla efektywności algorytmów eksploracji danych, analizy numerycznej, badań statystycznych, kombinatoryki oraz uczenia maszynowego.
rdf:langString Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных данных, что приводит к соответствующему росту сложности переборных алгоритмов. «Проклятие» действует и на непрерывные оптимизационные методы в силу усложнения многомерной целевой функции. В более широком смысле термин применяется по отношению ко всем «неудобным» или необычным свойствам многомерных пространств и к трудностям их исследования. В комбинаторике чаще имеют в виду не размерность пространства, а размер исходных данных. В частности, в задачах теории Рамсея было бы точнее говорить о ’’’проклятии размера’’’ исходных данных даже в случае задач минимальной размерности — числа параметров, определяющих задачу. Впервые термин ввел Ричард Беллман применительно к общей задаче динамического программирования. Это выражение продолжает употребляться в работах по технической кибернетике, машинному обучению и анализу сложных систем, в том числе, в заголовках научных статей.
rdf:langString 维数灾难(英語:curse of dimensionality,又名维度的詛咒)是一个最早由理查德·贝尔曼(Richard E. Bellman)在考虑优化问题时首次提出来的术语,用来描述当(数学)空间维度增加时,分析和组织高维空间(通常有成百上千维),因体积指数增加而遇到各种问题场景。这样的难题在低维空间中不会遇到,如物理空间通常只用三维来建模。 举例来说,100个平均分布的点能把一个单位区间以每个点距离不超过0.01采样;而当维度增加到10后,如果以相邻点距离不超过0.01小方格采样一单位超正方体,则需要1020 个采样点:所以,这个10维的超正方体也可以说是比单位区间大1018倍。(这个是理查德·贝尔曼所举的例子) 在很多领域中,如采样、组合数学、机器学习和数据挖掘都有提及到这个名字的现象。这些问题的共同特色是当维数提高时,空间的体积提高太快,因而可用数据变得很稀疏。稀疏性对于任何要求有统计学意义的方法而言都是一个问题,为了获得在统计学上正确并且有可靠的结果,用来支撑这一结果所需要的数据量通常随着维数的提高而呈指数级增长。而且,在组织和搜索数据时也有赖于检测对象区域,这些区域中的对象通过相似度属性而形成分组。然而在高维空间中,所有的数据都很稀疏,从很多角度看都不相似,因而平常使用的数据组织策略变得极其低效。 “维数灾难”通常是用来作为不要处理高维数据的无力借口。然而,学术界一直都对其有兴趣,而且在继续研究。另一方面,也由于的存在,其概念是指任意低维数据空间可简单地通过增加空余(如复制)或随机维将其转换至更高维空间中,相反地,许多高维空间中的数据集也可削减至低维空间数据,而不必丢失重要信息。这一点也通过众多降维方法的有效性反映出来,如应用广泛的主成分分析方法。针对距离函数和最近邻搜索,当前的研究也表明除非其中存在太多不相关的维度,带有维数灾难特色的数据集依然可以处理,因为相关维度实际上可使得许多问题(如聚类分析)变得更加容易。另外,一些如马尔科夫蒙特卡洛或共享最近邻搜索方法经常在其他方法因为维数过高而处理棘手的数据集上表现得很好。
rdf:langString Прокляття розмірності (англ. curse of dimensionality) вказує на різні явища, які виникають при аналізі та роботі з даними в багатовимірних просторах (часто це сотні або тисячі вимірів). Ці явища не зустрічаються в маловимірних випадках, таких як тривимірний фізичний простір з яким ми стикаємось щодня. Термін спочатку використав Річард Беллман для задач динамічної оптимізації. Є численні явища, які виникають під подібною назвою у таких областях як чисельні методи, відбір вибірки, комбінаторика, машинне навчання, добування даних, бази даних. Спільним негараздом, який виникає при збільшенні розмірності, є дуже швидке збільшення об'єму простору, наслідком чого наявні дані стають розрідженими. Така розрідженість даних стає на заваді будь-якого методу, який використовує статистичну значущість. Для отримання статистично надійного результату, потрібно, щоб кількість даних, необхідних для отримання результату, зростала експоненціально розмірності. Також, організація та пошук даних часто залежить від виявлення областей, де об'єкти утворюють групи з подібними властивостями; однак, у випадку високої розмірності, всі об'єкти, з'являються розрідженими та різними в багатьох відношеннях, що перешкоджає ефективній організації спільних даних. Ці ефекти також використовуються для спрощення алгоритмів машинного навчання у багатовимірних просторах, що називають благословенням розмірності. Благословення розмірності та прокляття розмірності визнаються двома взаємодоповнюючими впливовими принципами у багатовимірному аналізі даних.
xsd:nonNegativeInteger 30590

data from the linked data cloud