Craig interpolation
http://dbpedia.org/resource/Craig_interpolation an entity of type: WikicatLemmas
In mathematical logic, Craig's interpolation theorem is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ, and the two have at least one atomic variable symbol in common, then there is a formula ρ, called an interpolant, such that every non-logical symbol in ρ occurs both in φ and ψ, φ implies ρ, and ρ implies ψ. The theorem was first proved for first-order logic by William Craig in 1957. Variants of the theorem hold for other logics, such as propositional logic. A stronger form of Craig's interpolation theorem for first-order logic was proved by Roger Lyndon in 1959; the overall result is sometimes called the Craig–Lyndon theorem.
rdf:langString
Die Craig-Interpolation ist ein Ausdruck der Logik. Der zugrunde liegende Satz (Craig’s Lemma, Interpolationstheorem) lautet folgendermaßen: Es seien und zwei Theorien und der Satz sei ein in ableitbarer Satz. Dann gilt: Es gibt ein , sodass in ableitbar ist, und ist in ableitbar.
rdf:langString
En logique mathématique, le théorème d'interpolation de Craig dit que si une formule φ en implique une deuxième ψ, et que φ et ψ partagent au moins un symbole non logique en commun, alors il existe une formule ρ, appelée interpolant, telle que :
* φ implique ρ ;
* ρ implique ψ ;
* tout symbole non logique dans ρ apparaît à la fois dans φ et ψ.
rdf:langString
크레이그의 보간 정리(Craig's interpolation theorem, -補間 定理)는 증명 이론의 정리로, 미국의 철학자이자 논리학자인 가 제시하였다. 간단히 말해 다음과 같이 쓸 수 있다.
* 어떤 논리식 a에서 다른 논리식 b를 추론할 수 있다고 하자. 그러면, c에서 나타나는 모든 는 a와 b 각각에서도 나타나는 제3의 논리식 c가 존재하여 a에서 c를 추론할 수 있고, 다시 c에서 b를 추론할 수 있다. 이 c를 보간(interpolant)이라 한다. 크레이그는 1957년 이 정리를 일차 논리학에 대해 증명하였다. 미국 수학자 이 일차 논리학에 대한 이 정리의 보다 강한 판본을 1959년 증명하였으므로 이 둘을 합쳐 크레이그-린든 정리라 부르기도 한다.
rdf:langString
クレイグの補間定理(英: Craig's interpolation theorem)は論理学における定理であり、論理体系によってその定義が異なる。William Craig が1957年、一階述語論理について証明したのが最初である。クレイグの補題とも。
rdf:langString
Twierdzenie Craiga – twierdzenie logiki, a w szczególności rachunku predykatów pierwszego rzędu. Udowodnione przez (ang.), amerykańskiego logika.
rdf:langString
rdf:langString
Craig-Interpolation
rdf:langString
Craig interpolation
rdf:langString
Théorème d'interpolation de Craig
rdf:langString
크레이그의 보간 정리
rdf:langString
クレイグの補間定理
rdf:langString
Twierdzenie Craiga
xsd:integer
2056790
xsd:integer
1059769235
rdf:langString
In mathematical logic, Craig's interpolation theorem is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ, and the two have at least one atomic variable symbol in common, then there is a formula ρ, called an interpolant, such that every non-logical symbol in ρ occurs both in φ and ψ, φ implies ρ, and ρ implies ψ. The theorem was first proved for first-order logic by William Craig in 1957. Variants of the theorem hold for other logics, such as propositional logic. A stronger form of Craig's interpolation theorem for first-order logic was proved by Roger Lyndon in 1959; the overall result is sometimes called the Craig–Lyndon theorem.
rdf:langString
Die Craig-Interpolation ist ein Ausdruck der Logik. Der zugrunde liegende Satz (Craig’s Lemma, Interpolationstheorem) lautet folgendermaßen: Es seien und zwei Theorien und der Satz sei ein in ableitbarer Satz. Dann gilt: Es gibt ein , sodass in ableitbar ist, und ist in ableitbar.
rdf:langString
En logique mathématique, le théorème d'interpolation de Craig dit que si une formule φ en implique une deuxième ψ, et que φ et ψ partagent au moins un symbole non logique en commun, alors il existe une formule ρ, appelée interpolant, telle que :
* φ implique ρ ;
* ρ implique ψ ;
* tout symbole non logique dans ρ apparaît à la fois dans φ et ψ.
rdf:langString
크레이그의 보간 정리(Craig's interpolation theorem, -補間 定理)는 증명 이론의 정리로, 미국의 철학자이자 논리학자인 가 제시하였다. 간단히 말해 다음과 같이 쓸 수 있다.
* 어떤 논리식 a에서 다른 논리식 b를 추론할 수 있다고 하자. 그러면, c에서 나타나는 모든 는 a와 b 각각에서도 나타나는 제3의 논리식 c가 존재하여 a에서 c를 추론할 수 있고, 다시 c에서 b를 추론할 수 있다. 이 c를 보간(interpolant)이라 한다. 크레이그는 1957년 이 정리를 일차 논리학에 대해 증명하였다. 미국 수학자 이 일차 논리학에 대한 이 정리의 보다 강한 판본을 1959년 증명하였으므로 이 둘을 합쳐 크레이그-린든 정리라 부르기도 한다.
rdf:langString
クレイグの補間定理(英: Craig's interpolation theorem)は論理学における定理であり、論理体系によってその定義が異なる。William Craig が1957年、一階述語論理について証明したのが最初である。クレイグの補題とも。
rdf:langString
Twierdzenie Craiga – twierdzenie logiki, a w szczególności rachunku predykatów pierwszego rzędu. Udowodnione przez (ang.), amerykańskiego logika.
xsd:nonNegativeInteger
8193